Lectin Pathway Enzyme MASP-2 and Downstream Complement Activation in COVID-19

Author:

Götz Maximilian PeterORCID,Skjoedt Mikkel-OleORCID,Bayarri-Olmos Rafael,Hansen Cecilie BoORCID,Pérez-Alós LauraORCID,Jarlhelt IdaORCID,Benfield ThomasORCID,Rosbjerg Anne,Garred PeterORCID

Abstract

Mannose-binding lectin-associated serine protease 2 (MASP-2) is the main activator of the lectin complement pathway and has been suggested to be involved in the pathophysiology of coronavirus disease 2019 (COVID-19). To study a possible association between MASP-2 and COVID-19, we aimed at developing a sensitive and reliable MASP-2 ELISA. From an array of novel mouse-monoclonal antibodies using recombinant MASP-2 as antigen, two clones were selected to create a sandwich ELISA. Plasma samples were obtained from 216 healthy controls, 347 convalescent COVID-19 patients, and 147 prospectively followed COVID-19 patients. The assay was specific towards MASP-2 and did not recognize the truncated <i>MASP2</i> splice variant MAP-2 (MAp19). The limit of quantification was shown to be 0.1 ng/mL. MASP-2 concentration was found to be stable after multiple freeze-thaw cycles. In healthy controls, the mean MASP-2 concentration was 524 ng/mL (95% CI: 496.5–551.6). No significant difference was found in the MASP-2 concentrations between COVID-19 convalescent samples and controls. However, a significant increase was observed in prospectively followed COVID-19 patients (mean: 834 ng/mL [95% CI: 765.3–902.7, <i>p</i> &#x3c; 0.0001]). In these patients, MASP-2 concentration correlated significantly with the concentrations of the terminal complement complex (ρ = 0.3596, <i>p</i> &#x3c; 0.0001), with the lectin pathway pattern recognition molecules ficolin-2 (ρ = 0.2906, <i>p</i> = 0.0004) and ficolin-3 (ρ = 0.3952, <i>p</i> &#x3c; 0.0001) and with C-reactive protein (ρ = 0.3292, <i>p</i> = 0.0002). Overall, we developed a specific quantitative MASP-2 sandwich ELISA. MASP-2 correlated with complement activation and inflammatory markers in COVID-19 patients, underscoring a possible role of MASP-2 in COVID-19 pathophysiology.

Publisher

S. Karger AG

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3