The Novel microRNA Rno-miR-686-3p Is Associated with the Ischaemic Penumbra

Author:

Wang Wei,Li Jin-Pin,Liu Jing-Li

Abstract

<b><i>Introduction:</i></b> We explored microRNA (miRNA) profiles correlated with the penumbra in three different phases of ischaemic stroke, using a permanent middle cerebral artery occlusion (p-MCAO) rat model. <b><i>Materials and Methods:</i></b> A 2-mm coronal section was cut from the optic chiasma in the caudal direction, and the penumbra was located in the area between a longitudinal line approximately 2 mm from the midline and a transverse diagonal line at the “2-o’clock” position. Total RNA was extracted from tissue specimens and peripheral blood samples, followed by deep sequencing analysis. <b><i>Results:</i></b> We identified nine novel miRNA candidates in tissues and evaluated their expression levels using real-time quantitative polymerase chain reaction. In situ hybridization was conducted to assess miRNA localization in the brain. Of these nine candidates, we identified and characterized a novel miRNA, rno-miR-686-3p, which was localized in cell nuclei of the cortex, and associated with the penumbra. rno-miR-686-3p was downregulated at 1 (<i>p =</i> 0.042), 3 (<i>p =</i> 0.032), and 4 h (<i>p =</i> 0.007) post-p-MCAO in the penumbra. A total of 297 potential target genes were predicted. Moreover, functional annotation clustering and pathway enrichment analysis predicted that rno-miR-686-3p participates in transcriptional regulation and the Wnt and cyclic adenosine monophosphate (cAMP) signalling pathways. <b><i>Conclusion:</i></b> rno-miR-686-3p is a novel miRNA associated with the ischaemic penumbra that is implicated in transcriptional regulation and modulation of the Wnt and cAMP signalling pathways. Furthermore, it may serve as a possible new biomarker with potential value for detecting the existence of the penumbra.

Publisher

S. Karger AG

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3