Neuroprotective Effect of HOTAIR Silencing on Isoflurane-Induced Cognitive Dysfunction via Sponging microRNA-129-5p and Inhibiting Neuroinflammation

Author:

Wang Ying,Zhao Shanshan,Li Guohua,Wang Dawei,Jin Yanwu

Abstract

<b><i>Introduction:</i></b> This article purposed to detect the function of the HOTAIR and HOTAIR/microRNA-129-5p (miR-129-5p) axis on the isoflurane (ISO)-injured cells and rat, and propounded a novel perspective in exploring the molecular pathogenesis of ISO damage. <b><i>Methods:</i></b> The expression of HOTAIR and miR-129-5p was tested by quantitative real-time PCR. The viable cells were identified using MMT, and the apoptotic cells were provided by flow cytometry. The concentration of proinflammatory indicators was revealed by enzyme-linked immunosorbent assay kits. The function of HOTAIR on oxidative stress was detected by commercial kits. A luciferase assay was performed to confirm the relationship between miR-129-5p and HOTAIR. The Morris water maze test was conducted to elucidate the cognition of SD rats. <b><i>Results:</i></b> The expression of HOTAIR was enhanced and the expression of miR-129-5p was lessened in the ISO-evoked SD rats and HT22 cells. The interference of HOTAIR reversed the injury of ISO on cell viability, apoptosis, inflammation, and oxidative stress. Besides, HOTAIR might be a target ceRNA of miR-129-5p. MiR-129-5p abrogated the function of silenced HOTAIR on cell viability, cell apoptosis, inflammation, and oxidative stress. Moreover, in vivo, the intervention of HOTAIR reversed the influence of ISO on cognition and oxidative stress by binding miR-129-5p. <b><i>Discussion/Conclusion:</i></b> Lowly expressed HOTAIR contributed to the recovery of the ISO-injured HT22 cell model from the abnormal viability, apoptosis, inflammation, and oxidative stress by regulating miR-129-5p. miR-129-5p mediated the function of HOTAIR on cognition and oxidative balance in the ISO-managed SD rat model.

Publisher

S. Karger AG

Subject

Endocrine and Autonomic Systems,Neurology,Endocrinology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3