NLRP3 Deletion Attenuated Angiotensin II-Induced Renal Fibrosis by Improving Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

Author:

Zhang Yumei,Liu Yuqing,Bi Xiao,Hu Chun,Ding Wei

Abstract

<b><i>Background:</i></b> Increasing evidence suggests that angiotensin II (Ang II), the bioactive pro-oxidant in the renin-angiotensin system, aggravates fibrosis, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in multiple diseases, such as renal fibrosis. However, the role and underlying mechanism of Ang II in renal fibrosis remain unclear. Here, we investigated whether the NLRP3 inflammasome mediated Ang II-induced renal fibrosis, as well as the downstream pathways involved in this process. <b><i>Methods:</i></b> NLRP3<sup>−/−</sup> mice were used as a model to study Ang II-infused renal fibrosis. Mice were divided into 4 groups: sham wild type, Ang II-infused wild type, sham NLRP3<sup>−/−</sup>, and Ang II-infused NLRP3<sup>−/−</sup> groups. Ang II infusion-induced renal injury was confirmed by periodic acid-Schiff and Masson’s staining, immunohistochemistry, and transmission electron microscopy (TEM). Mitochondrial morphology was presented on TEM micrographs, and mitochondrial function was reflected by the protein levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), dynamin-related protein 1 (DRP1), and mitofusin 2 (MFN2), as assessed by Western blotting. Endoplasmic reticulum (ER) stress was characterized by changes in the levels of ER chaperones, such as GRP94, BiP, CHOP, and caspase 12. <b><i>Results:</i></b> Ang II infusion increased cell proliferation, extracellular matrix overproduction, inflammatory cell infiltration, and glomerulosclerosis and induced obvious morphological abnormalities in podocytes. Ang II infusion promoted mitochondrial damage, as indicated by TEM, and induced mitochondrial dysfunction, as evidenced by downregulation of PGC-1α, TFAM, and increased mitochondrial ROS. In addition, DRP1 expression was upregulated, while MFN2 expression was markedly decreased. The levels of GRP94, BiP, CHOP, and caspase 12 were significantly increased. However, all these detrimental effects were attenuated by NLRP3 deletion. <b><i>Conclusions:</i></b> NLRP3 deletion may attenuate angiotensin II-induced renal fibrosis by improving mitochondrial dysfunction and ER stress.

Publisher

S. Karger AG

Reference23 articles.

1. Hautem N, Morelle J, Sow A, Corbet C, Feron O, Goffin E, et al. The NLRP3 inflammasome has a critical role in peritoneal dialysis-related peritonitis. J Am Soc Nephrol. 2017;28(7):2038–52.

2. Remuzzi G, Perico N, Macia M, Ruggenenti P. The role of renin-angiotensin-aldosterone system in the progression of chronic kidney disease. Kidney Int Suppl. 2005;99(99):S57–65.

3. Leemans JC, Kors L, Anders HJ, Florquin S. Pattern recognition receptors and the inflammasome in kidney disease. Nat Rev Nephrol. 2014;10(7):398–414.

4. Casare FA, Thieme K, Costa-Pessoa JM, Rossoni LV, Couto GK, Fernandes FB, et al. Renovascular remodeling and renal injury after extended angiotensin II infusion. Am J Physiol Renal Physiol. 2016;310(11):F1295–307.

5. Ning ZW, Luo XY, Wang GZ, Li Y, Pan MX, Yang RQ, et al. MicroRNA-21 mediates angiotensin II-induced liver fibrosis by activating NLRP3 inflammasome/IL-1β axis via targeting Smad7 and Spry1. Antioxid Redox Signal. 2017;27(1):1–20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3