Different Seasonal Patterns in Song System Volume in Willow Tits and Great Tits

Author:

Longmoor Georgia K.,Lange C. Henrik,Darvell Hannah,Walker Lauren,Rytkönen Seppo,Vatka Emma,Hohtola Esa,Orell Markku,Smulders Tom V.

Abstract

In most species of seasonally breeding songbirds studied to date, the brain areas that control singing (i.e. the song control system, SCS) are larger during the breeding season than at other times of the year. In the family of titmice and chickadees (Paridae), one species, the blue tit (Cyanistes caeruleus), shows the typical pattern of seasonal changes, while another species, the black-capped chickadee (Poecile atricapillus), shows, at best, very reduced seasonal changes in the SCS. To test whether this pattern holds up in the two Parid lineages to which these two species belong, and to rule out that the differences in seasonal patterns observed were due to differences in geography or laboratory, we compared the seasonal patterns in two song system nuclei volumes (HVC and Area X) in willow tits (Poecile montanus), closely related to black-capped chickadees, and in great tits (Parus major), more closely related to blue tits, from the same area around Oulu, Finland. Both species had larger gonads in spring than during the rest of the year. Great tit males had a larger HVC in spring than at other times of the year, but their Area X did not change in size. Willow tits showed no seasonal change in HVC or Area X size, despite having much larger gonads in spring than the great tits. Our findings suggest that the song system of willow tits and their relatives may be involved in learning and producing nonsong social vocalizations. Since these vocalizations are used year-round, there may be a year-round demand on the song system. The great tit and blue tit HVC may change seasonally because the demand is only placed on the song system during the breeding season, since they only produce learned vocalizations during this time. We suggest that changes were not observed in Area X because its main role is in song learning, and there is evidence that great tits do not learn new songs after their first year of life. Further study is required to determine whether our hypothesis about the role of the song system in the learned, nonsong vocalizations of the willow tit and chickadee is correct, and to test our hypothesis about the role of Area X in the great tit song system.

Publisher

S. Karger AG

Subject

Behavioral Neuroscience,Developmental Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3