Trefoil Factor 3 Deficiency Affects Liver Lipid Metabolism

Author:

Bujak Maro,Bujak Ivana Tartaro,Sobočanec Sandra,Mihalj Martina,Novak Sanja,Ćosić Anita,Levak Maja Tolušić,Kopačin Vjekoslav,Mihaljević Branka,Balog Tihomir,Drenjančević Ines,Loncar Mirela Baus

Abstract

Background/Aims: Tff3 protein plays a well recognized role in the protection of gastrointestinal mucosa. The role of Tff3 in the metabolism is a new aspect of its function. Tff3 is one of the most affected liver genes in early diabetes and fatty liver rodent models. The aim of this study was to investigate the effect of Tff3 deficiency on lipid and carbohydrate metabolism and on markers of oxidative stress that accompanies metabolic deregulation. Methods: Specific markers of health status were determined in sera of Tff3 deficient mice, including glucose level, functional glucose and insulin tolerance. Composition of fatty acids (FAs) was determined in liver and blood serum by using gas chromatography. Oxidative stress parameters were determined: lipid peroxidation level via determination of lipid hydroperoxide and thiobarbituric acid reactive substances (TBARS), antioxidative capacity (FRAP) and specific antioxidative enzyme activity. The expression of several genes and proteins related to the metabolism of lipids, carbohydrates and oxidative stress (CAT, GPx1, SOD2, PPARα, PPARγ, PPARδ, HNF4α and SIRT1) was determined. Results: Tff3 deficient mice showed better glucose utilization in the glucose and insulin test. Liver lipid metabolism is affected and increased formation of small lipid vesicles is noticed. Formation of lipid droplets is not accompanied by increased liver oxidative stress, although expression/activity of monitored enzymes is deregulated when compared with wild type mice. Tff3 deficient mice exhibit reduced expression of metabolism relevant SIRT1 and PPARγ genes. Conclusion: Tff3 deficiency affects the profile and accumulation of FAs in the liver, with no obvious oxidative stress increase, although expression/activity of monitored enzymes is changed as well as the level of SIRT1 and PPARγ protein. Considering the strong downregulation of liver Tff3 in diabetic/obese mice, presence in circulation and regulation by food/insulin, Tff3 is an interesting novel candidate in metabolism relevant conditions.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3