MicroRNA-135a Inhibits Nasopharyngeal Carcinoma Cell Proliferation Through Targeting Interleukin-17

Author:

Wang Li-Xin,Kang Zhao-Peng,Yang Zhi-Chao,Ma Rui-Xia,Tan Yan,Peng Xian-Bing,Dai Run-Zhi,Li Jin,Yu Yang,Xu Min

Abstract

Background/Aims: The objective of this study was to investigate the potential role of IL-17 in the development of nasopharyngeal carcinoma (NPC) and to screen microRNAs (miRNAs) that potentially target IL-17 in NPC cells. Methods: Blood was collected from NPC patients and normal subjects, and plasma IL-17 concentration was quantified by enzyme-linked immunosorbent assay. An immortalized normal human nasopharyngeal epithelial cell line, NP69, was treated with or without human IL-17 (15 ng/mL) for various times, and expression of IL-1ß, IL-6, IL-12, and TNF-α mRNA was assessed by real-time reverse transcription PCR. The candidate miRNAs that potentially target IL-17 were predicted by a bioinformatics strategy. The selected miR-135a mimic was transfected into primary NPC cells, and cell proliferation was assessed by MTT assay. Results: The concentration of plasma IL-17 was significantly higher in the NPC patients (92.5 ± 7.3 pg/mL) than in the control subjects (56.8 ± 2.9 pg/mL). In response to IL-17 treatment, the mRNA expression of IL-1ß and IL-6 was significantly upregulated and reached a peak at 12 h, followed by a slight decrease at 24 h, while the mRNA expression of IL-12 and TNF-α was significantly upregulated at 12 h and remained high even at 48 h after exposure to IL-17. Moreover, miR-135a specifically targets IL-17 and was dramatically downregulated in NPC cells compared with NP69 cells. Transfection of exogenous miR-135a mimic resulted in significant suppression of IL-17 secretion and subsequent inhibition of NPC cell proliferation. Conclusions: Blood IL-17 was significantly higher in NPC patients compared with normal subjects. Expression of miR-135a in the cancer cells isolated from nasopharyngeal tumors was significantly lower than that in NP69 cells, and suppression of IL-17 by miR-135a mimic resulted in significant inhibition of NPC cell proliferation. These findings suggested that downregulation of miR-135a may contribute to the development of NPC via the mechanism of IL-17 stimulation of proinflammatory cytokine expression.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3