5-Deoxyadenosine Metabolism: More than “Waste Disposal”

Author:

Rapp JohannaORCID,Forchhammer KarlORCID

Abstract

5-Deoxyadenosine (5dAdo) is a by-product of many radical SAM enzyme reactions in all domains of life, and an inhibitor of the radical SAM enzymes themselves. Hence, pathways to recycle or dispose of this toxic by-product must exist but remain largely unexplored. In this review, we discuss the current knowledge about canonical and atypical 5dAdo salvage pathways that have been characterized in the last years. We highlight studies that report on how, in certain organisms, the salvage of 5dAdo via specific pathways can confer a growth advantage by providing either intermediates for the synthesis of secondary metabolites or a carbon source for the synthesis of metabolites of the central carbon metabolism. Yet, an alternative recycling route exists in organisms that use 5dAdo as a substrate to synthesize and excrete 7-deoxysedoheptulose, an allelopathic inhibitor of one enzyme of the shikimate pathway, thereby competing for their own niche. Remarkably, most steps of 5dAdo salvage are the result of the activity of promiscuous enzymes. This strategy enables even organisms with a small genome to synthesize bioactive compounds which they can deploy under certain conditions to gain a competitive growth advantage. We conclude emphasizing that, unexpectedly, 5dAdo salvage pathways seem not to be ubiquitously present, raising questions about the fate of such a toxic by-product in those species. This observation also suggests that additional 5dAdo salvage pathways, possibly relying on the activity of promiscuous enzymes, may exist. The future challenge will be to bring to light these “cryptic” 5dAdo recycling pathways.

Publisher

S. Karger AG

Subject

Cell Biology,Religious studies,Applied Microbiology and Biotechnology,Physiology,Biochemistry,Microbiology,Biotechnology

Reference68 articles.

1. Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5'-methylthioadenosine. IUBMB Life. 2009;61(12):1132–42.

2. Beaudoin GAW, Li Q, Folz J, Fiehn O, Goodsell JL, Angerhofer A, et al. Salvage of the 5-deoxyribose byproduct of radical SAM enzymes. Nat Commun. 2018;9(1):3105.

3. Berasain C, Hevia H, Fernández-Irigoyen J, Larrea E, Caballería J, Mato JM, et al. Methylthioadenosine phosphorylase gene expression is impaired in human liver cirrhosis and hepatocarcinoma. Biochim Biophys Acta. 2004;1690(3):276–84.

4. Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. Science. 2004;303(5654):76–9.

5. Bertino JR, Waud WR, Parker WB, Lubin M. Targeting tumors that lack methylthioadenosine phosphorylase (MTAP) activity: current strategies. Cancer Biol Ther. 2011;11(7):627–32.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3