Dachengqi Decoction Attenuates Inflammatory Response via Inhibiting HMGB1 Mediated NF-κB and P38 MAPK Signaling Pathways in Severe Acute Pancreatitis

Author:

Chen Zhuoan,Chen Yafeng,Pan Liyun,Li Hongchang,Tu Jiamin,Liu Cheng,Dai Xiuqin,Zhang Xiaofen,Sun Guifang,Feng Dianxu

Abstract

Background/Aims: Severe acute pancreatitis (SAP) is a sudden inflammation of the pancreas. The traditional Chinese medicine formula Dachengqi decoction (DCQD) is proven to be beneficial in the comprehensive treatment for pancreatitis patients in clinical practice. However, the molecular mechanism of DCQD on SAP remains unclear. High mobility group box 1(HMGB1) that functions as a damage-associated molecular pattern molecule (DAMP) has attracted much interest. Methods: In this study, we used lipopolysaccharide (LPS) and cerulein to induce severe acute pancreatitis in C57BL/6 mice with subsequent administration with low, medium and high dose (2.3 g/kg, 7 g/kg and 21 g/kg, respectively) of DCQD. Results: DCQD treatment improved the pathological score and decreased serum amylase and lipase in a dose-dependent manner. In addition, it suppressed the immune cell-induced secretion of HMGB1 and its translocation from the nucleus to the cytoplasm, thus repressing the expression of IL-6 and TNF-α. Further, pretreatment with DCQD decreased responses of TLRs, and suppressed the activation of NF-kB and p38 MAPK pathway. Conclusion: Decreasing the secretion of HMGB1 could reduce pro-inflammatory cytokines, which may help cutting down the risks of development from localized pathological changes to a systemic inflammatory response syndrome and even lead to multiple organ failure.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3