In vivo Lipopolysaccharide Tolerance Recruits CD11b+ Macrophages to the Liver with Enhanced Bactericidal Activity and Low Tumor Necrosis Factor-Releasing Capability, Resulting in Drastic Resistance to Lethal Septicemia

Author:

Kinoshita Manabu,Miyazaki Hiromi,Nakashima Hiroyuki,Nakashima Masahiro,Nishikawa Makoto,Ishikiriyama Takuya,Kato Shoichiro,Iwaya Keiichi,Hiroi Sadayuki,Shinomiya Nariyoshi,Seki Shuhji

Abstract

Objectives: In vivo lipopolysaccharide (LPS) tolerance on bacterial infection was investigated, focusing on liver macrophages. Methods: LPS tolerance was induced by intraperitoneal injections with 5 μg/kg of LPS for 3 consecutive days, and then mice were intravenously infected with Escherichia coli. Results: All LPS-primed mice survived lethal bacterial infection. Drastic enhancement of bactericidal activity of liver macrophages strongly contributed to bacterial clearance. Although LPS-primed mice produced substantial amounts of tumor necrosis factor (TNF) inside the liver, TNF efflux into the systemic circulation was markedly suppressed. These mice showed a dramatic increase in CD11b+ monocyte- derived macrophages in the liver. The CD11b+ macrophages that increased in LPS-primed mice were those with strong phagocytic/bactericidal activity and an upregulated expression of Fcγ receptor I, but the subfraction with a potent TNF-producing capacity and poor phagocytic activity diminished. The adoptive transfer of CD11b+ macrophages from LPS-primed mice to control mice increased survival after bacterial infection and reduced the elevation of plasma TNF. LPS priming did not affect the CD68+ resident Kupffer cells, and CD68+ Kupffer cell-depleted mice still exhibited LPS tolerance with strong resistance to bacteremia. Conclusions: LPS tolerance recruits CD11b+ macrophages to the liver with enhanced bactericidal activity, which plays a central role in resistance to lethal bacteremia.

Publisher

S. Karger AG

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3