Indocyanine Green-Labeled Platelets for Survival and Recovery Studies

Author:

von Behren Johannes-Moritz,Wesche Jan,Greinacher Andreas,Aurich Konstanze

Abstract

Introduction: Before being implemented in daily clinical routine, new production strategies for platelet concentrates (PCs) must be validated for their efficacy. Besides in vitro testing, the establishment of new methods requires the labeling of platelets for in vivo studies of platelets’ survival and recovery. Indocyanine green (ICG) is a Food and Drug Administration-approved near-infrared (NIR) fluorescent dye for diagnostic use in vivo, suitable for non-radioactive direct cell labeling of platelets. Methods: Platelets from PCs in storage solutions with different plasma concentrations were labeled with ICG up to concentrations of 200 μ<sc>m</sc>. Whole blood (WB) was used as an ex vivo matrix to monitor the labeling stability of ICG-labeled platelets. The impact of labeling processes was assessed by the quantification of CD62P expression and PAC-1 binding as platelet function markers. Platelet aggregation was analyzed by light transmission aggregometry. ICG-labeling efficiency and stability of platelets were determined by flow cytometry. Results: Platelets from PCs could be successfully labeled with 10 μ<sc>m</sc> ICG after 1 and 4 days of storage. The best labeling efficiency of 99.8% ± 0.1% (immediately after labeling) and 81% ± 6.2% (after 24 h incubation with WB) was achieved by plasma replacement by 100% platelet additive solution for the labeling process. Since the washing process slightly impaired platelet function, ICG labeling itself did not affect platelets. Immediately after the ICG-labeling process, plasma was re-added, resulting in a recovered platelet function. Conclusion: We developed a Good Manufacturing Practice compatible protocol for ICG fluorescent platelet labeling suitable for survival and recovery studies in vivo as a non-radioactive labeling alternative.

Publisher

S. Karger AG

Subject

Hematology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3