Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification

Author:

Moore Camille M.,Jacobson Sean A.,Fingerlin Tasha E.

Abstract

<b><i>Introduction:</i></b> When analyzing data from large-scale genetic association studies, such as targeted or genome-wide resequencing studies, it is common to assume a single genetic model, such as dominant or additive, for all tests of association between a given genetic variant and the phenotype. However, for many variants, the chosen model will result in poor model fit and may lack statistical power due to model misspecification. <b><i>Objective:</i></b> We develop power and sample size calculations for tests of gene and gene × environment interaction, allowing for misspecification of the true mode of genetic susceptibility. <b><i>Methods:</i></b> The power calculations are based on a likelihood ratio test framework and are implemented in an open-source R package (“genpwr”). <b><i>Results:</i></b> We use these methods to develop an analysis plan for a resequencing study in idiopathic pulmonary fibrosis and show that using a 2-degree of freedom test can increase power to detect recessive genetic effects while maintaining power to detect dominant and additive effects. <b><i>Conclusions:</i></b> Understanding the impact of model misspecification can aid in study design and developing analysis plans that maximize power to detect a range of true underlying genetic effects. In particular, these calculations help identify when a multiple degree of freedom test or other robust test of association may be advantageous.

Publisher

S. Karger AG

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3