Candida albicans Increases Dentine Demineralization Provoked by Streptococcus mutans Biofilm

Author:

Sampaio Aline A.,Souza Samilly E.,Ricomini-Filho Antônio P.,Del Bel Cury Altair A.,Cavalcanti Yuri W.,Cury Jaime A.

Abstract

Streptococcus mutans are considered the most cariogenic bacteria, but it has been suggested that Candida albicans could increase their cariogenicity. However, the effect of this dual-species microorganisms’ combination on dentine caries has not been experimentally evaluated. Biofilms of C. albicans, S. mutans and C. albicans + S. mutans (n = 12/biofilm) were grown in ultra-filtered tryptone yeast extract broth culture medium for 96 h on root dentine slabs of known surface hardness and exposed 8 times per day for 3 min to 10% sucrose. The medium was changed 2 times per day (after the 8 cariogenic challenges and after the overnight period of famine), and aliquots were analyzed to determinate the pH (indicator of biofilm acidogenicity). After 96 h, the biofilms were collected to determine the wet weight, colony-forming units, and the amounts of extracellular polysaccharides (soluble and insoluble). Dentine demineralization was assessed by surface hardness loss (% SHL). The architecture of the biofilms was analyzed by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Data were analyzed by ANOVA followed by Tukey’s test (α = 0.05). The dual-species C. albicans + S. mutans biofilm provoked higher % SHL on dentine (p < 0.05) than the S. mutans and C. albicans biofilm. This was supported by the results of biofilm acidogenicity and the amounts of soluble (6.4 ± 2.14 vs. 4.0 ± 0.94 and 1.9 ± 0.97, respectively) and insoluble extracellular polysaccharides (24.9 ± 9.22 vs. 18.9 ± 5.92 and 0.7 ± 0.48, respectively) (p < 0.05). The C. albicans biofilm alone presented low cariogenicity. The images by CLSM and TEM, respectively, suggest that the C. albicans + S. mutans biofilm is more voluminous than the S. mutans biofilm, and S. mutans cells interact with C. albicans throughout polysaccharides from the biofilm matrix. These findings show that C. albicans enhances the cariogenic potential of the S. mutans biofilm, increasing dentine demineralization.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3