Preventive Cold Acclimation Augments the Reparative Function of Endothelial Progenitor Cells in Mice

Author:

Peng Cheng,Wang Li-Ping,Tao Xia,Dong Xiao-Hui,Xu Chun-Fang,Jiang Yu,Liu Chun-Long,Ma Hui-Fang,Zhang Chuan,Chen Alex F,Xie He-Hui

Abstract

Background/Aims: Chronic cold exposure may increase energy expenditure and contribute to counteracting obesity, an important risk factor for cerebrocardiovascular diseases. This study sought to evaluate whether preventive cold acclimation before ischemia onset might be a promising option for preventing cerebral ischemic injury. Methods: After a 14-day cold acclimation period, young and aged mice were subjected to permanent cerebral ischemia, and histological analyses and behavioral tests were performed. Mouse endothelial progenitor cells (EPCs) were isolated, their function and number were determined, and the effects of EPC transplantation on cerebral ischemic injury were investigated. Results: Preventive cold acclimation before ischemia onset increased EPC function, promoted ischemic brain angiogenesis, protected against cerebral ischemic injury, and improved long-term stroke outcomes in young mice. In addition, transplanted EPCs from cold-exposed mice had a greater ability to reduce cerebral ischemic injury and promote local angiogenesis compared to those from control mice, and EPCs from donor animals could integrate into the recipient ischemic murine brain. Furthermore, transplanted EPCs might exert paracrine effects on cerebral ischemic injury, which could be improved by preventive cold acclimation. Moreover, preventive cold acclimation could also enhance EPC function, promote local angiogenesis, and protect against cerebral ischemic injury in aged mice. Conclusions: Preventive cold acclimation before ischemia onset improved long-term stroke outcomes in mice at least in part via promoting the reparative function of EPC. Our findings imply that a variable indoor environment with frequent cold exposure might benefit individuals at high risk for stroke.

Publisher

S. Karger AG

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3