Overexpression of M3 Muscarinic Receptor Suppressed Adverse Electrical Remodeling in Hypertrophic Myocardium Via Increasing Repolarizing K+ Currents

Author:

Chen Xue,Bai Yan,Sun Hanqi,Su Zhenli,Guo Jing,Sun Chuan,Du Zhimin

Abstract

Background/Aims: Cardiac hypertrophy (CH) is an adaptive response to diverse cardiovascular conditions, which is accompanied by adverse electrical remodeling manifested as abnormal K+ channel activities. M3 subtype of muscarinic acetylcholine receptor (M3-mAChR) is a novel regulator of cardiac electrical activity. In this study we aim to explore if the overexpression of M3-mAChR could attenuate the adverse electrical remodeling in CH and then uncover its underlying electrophysiological mechanisms. Methods: Transgenic mice with M3-mAChR overexpression (M3-TG) and wild type (WT) mice were subjected to transverse aortic constriction (TAC) to induce CH. Myocardial hypertrophy and cardiac function were quantified by the measurement of echocardiography, electrocardiogram, heart weight and tibia length. Whole-cell and signal-cell patch-clamp were employed to record electrophysiological properties by acute isolation of acutely isolated ventricular cardiomyocytes and Western blot was carried out to evaluate the Kir2.1and Kv4.2/4.3 protein levels in left ventricular tissue. Results: Compared with WT group, the elevation of cardiac index, including heart weight/body weight index and heart weight/tibia length index confirmed the myocardial hypertrophic growth induced by TAC. Echocardiography detection revealed that the TAC-treated mice showed an obvious increase in the thickness of left ventricular posterior wall (LVPW) and ejection fraction (EF) due to compensatory hypertrophy, which attenuated by the overexpression of M3-mAChR. Pressure overload induced a prolongation of QTc interval in WT mice, an effect blunted in M3-TG mice. Furthermore, compared with WT mice, M3-mAChR overexpression in hypertrophic myocardium accelerated cardiac repolarization and shortened action potential duration, and thus correcting the prolongation of QTc interval. Moreover, M3-TG mice have the greater current density of IK1 and Ito in ventricular myocytes after TAC compared with WT mice. Finally, compared with WT mice, M3-TG mice expressed higher levels of Kir2.1 in ventricular myocytes. Conclusion: M3-mAChR overexpression protected against adverse electrical remodeling in CH by enhancing potassium currents and promoting repolarization.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3