Prediction of Cognitive Impairment Risk among Older Adults: A Machine Learning-Based Comparative Study and Model Development

Author:

Li Jianwei,Li Jie,Zhu Huafang,Liu Mengyu,Li Tengfei,He Yeke,Xu Yuan,Huang Fen,Qin Qirong

Abstract

<b><i>Introduction:</i></b> The prevalence of cognitive impairment and dementia in the older population is increasing, and thereby, early detection of cognitive decline is essential for effective intervention. <b><i>Methods:</i></b> This study included 2,288 participants with normal cognitive function from the Ma’anshan Healthy Aging Cohort Study. Forty-two potential predictors, including demographic characteristics, chronic diseases, lifestyle factors, anthropometric indices, physical function, and baseline cognitive function, were selected based on clinical importance and previous research. The dataset was partitioned into training, validation, and test sets in a proportion of 60% for training, 20% for validation, and 20% for testing, respectively. Recursive feature elimination was used for feature selection, followed by six machine learning algorithms that were employed for model development. The performance of the models was evaluated using area under the curve (AUC), specificity, sensitivity, and accuracy. Moreover, SHapley Additive exPlanations (SHAP) was conducted to access the interpretability of the final selected model and to gain insights into the impact of features on the prediction outcomes. SHAP force plots were established to vividly show the application of the prediction model at the individual level. <b><i>Results:</i></b> The final predictive model based on the Naive Bayes algorithm achieved an AUC of 0.820 (95% CI, 0.773–0.887) on the test set, outperforming other algorithms. The top ten influential features in the model included baseline Mini-Mental State Examination (MMSE), education, self-reported economic status, collective or social activities, Pittsburgh sleep quality index (PSQI), body mass index, systolic blood pressure, diastolic blood pressure, instrumental activities of daily living, and age. The model demonstrated the potential to identify individuals at a higher risk of cognitive impairment within 3 years from older adults. <b><i>Conclusion:</i></b> The predictive model developed in this study contributes to the early detection of cognitive impairment in older adults by primary healthcare staff in community settings.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3