S100A4 Knockout Sensitizes Anaplastic Thyroid Carcinoma Cells Harboring BRAFV600E/Mt to Vemurafenib

Author:

Jiao Xuelong,Zhang Hongmei,Xu Xiangpeng,Yu Ying,Zhang Honglai,Zhang Jinna,Ning Liang,Hao Fengyun,Liu Xinfeng,Niu Min,Chen Chen-Tong,Chen Dong,Zhang Kejun

Abstract

Background/Aims: Anaplastic thyroid cancer (ATC), with 25% BRAFV600E mutation, is one of the most lethal human malignancies that currently has no effective therapy. Vemurafenib, a BRAFV600E inhibitor, has shown promise in clinical trials, including ATC patients, but is being hampered by the acquisition of drug resistance. Therefore, combination therapy that includes BRAFV600E inhibition and avoids resistance is a clinical need. Methods: ATC cell lines 8505C (BRAFV600E/mt), SW1736 (BRAFV600E/mt), KAT18 (BRAFV600E/wt) and Cal-62(BRAFV600E/wt) cells were used in the study. The ability of S100A knockout or /and in combination with the BRAF inhibitor vemurafenib on growth, apoptosis, invasion and apoptosis in ATC cells in vitro was demonstrated by MTT and BrdUrd incorporation assay, Annexin-V-FITC staining analyzed by flow cytometry, Transwell migration and Matrigel invasion assay. S100A4,pERK1/2, pAKT and pROCK1/2 protein was detected by western blot assay; Small molecule inhibitors of Y27632, U0126, MK-2206 and constitutively active forms of pCDNA-Myc-pERK, pCMV6-HA-Akt, pCMV-RhoA were employed, and the mechanistic studies were performed. We assessed the efficiency of in vivo combination treatment with S100A4 knockout and Vemurafenib on tumors. Results: S100A4 knockout induced apoptosis and reduced proliferation by inactivation of pAKT and pERK signals, and inhibited invasion and migration by inactivation of pAKT and RhoA/ROCK1/2 signals in 8505C or Cal-62 cells in vitro, and vice versa in SW1736 and KAT18 cells. Vemurafenib did not affect apoptosis of both 8505C and SW1736 cells, but reduced proliferation via arresting cell cycle, and promoted cell migration and invasion in vitro. Combination treatment with S100A4 knockdown and vemurafenib reduced cell proliferation, migration and invasion in vitro compared to the S100A4 knockdown or Vemurafenib alone. Vemurafenib treatment resulted in a transient inhibition of pERK expression and gradually activation of pAKT expression, but quickly recovery from ERK1/2 activation inhibition by vemurafenib treatment in 4 h for SW1736 and 8505C cells. Combined treatment completely inhibited ERK1/2 and AKT activation during 48 h. In an in vivo mouse model of SW1736 and 8505C, vemurafenib treatment alone did not significantly inhibit tumor growth in both of the tumors, but inhibited tumor growth in combined groups. Conclusion: Our results show S100A4 knockout alone inhibits ATC cells (rich endogenous S100A4) survival and invasion, regardless of the BRAFV600E status, and potentiates the effect of vemurafenib on tumor regression in vitro and in vivo. In addition, S100A4 knockout potently inhibits the recovery from ERK1/2 activation inhibition and the AKT activation following vemurafenib treatment and reversed the vemurafenib resistance. This therapeutic combination may be of benefit in patients with ATC.

Publisher

S. Karger AG

Subject

Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3