Administration of Interleukin-35-Conditioned Autologous Tolerogenic Dendritic Cells Prolong Allograft Survival After Heart Transplantation

Author:

Liu Xianglan,Sun Yong,Zheng Yang,Zhang Maomao,Jin Xiangyuan,Kang Kai,Wang Yongshun,Li Shuang,Zhang Hanlu,Zhao Qi,Zhang Shengnan,Wu Jian,Yu Bo

Abstract

Background/Aims: IL-35, a powerful suppressor of inflammation and autoimmunity, is primarily secreted by regulatory T cells (Tregs) and can, in turn, promote Treg differentiation. However, the precise effect of IL-35 on dendritic cells (DCs) remains to be clarified. Methods: In this study, we investigated the expression of IL-35 in DCs after stimulation with LPS utilizing enzyme linked immunosorbent assay(ELISA), quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) and western blotting, and the influence of IL-35 on the maturation and function of DCs by mixed lymphocyte reaction assay and flow cytometry. We further examined the regulation of IL-35 in DCs by the microRNA let-7i (let-7i) via transfected with let-7i mimic, inhibitor or suppressor of cytokine signalling 1 (SOCS1) siRNA. IL-35-overexpressing DCs were transfused into BALB/c recipients with C57BL/6 heart transplantations to verify the role of immune tolerance in transplantation. Results: The results showed that IL-35 expression was significantly up-regulated following lipopolysaccharide (LPS)-induced DC maturation. Overexpression of IL-35 suppressed DC maturation, promoted the secretion of anti-inflammatory cytokines, and subsequently affected the balance between Treg and Th17 cells. IL-35 expression in DCs was regulated by let-7i, which targets SOCS1. The transfusion of IL-35-transfected DCs induced Treg generation in mice and prolonged cardiac allograft survival. Conclusion: Our data demonstrated that IL-35 induces tolerogenic DCs which are capable of alleviating allograft rejection. Clinical application of IL-35-treated DCs might be a promising approach for eliciting cardiac allograft immune tolerance.

Publisher

S. Karger AG

Subject

Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3