Trichostatin A Induces Autophagy in Cervical Cancer Cells by Regulating the PRMT5-STC1-TRPV6-JNK Pathway

Author:

Liu Jian-Hao,Cao Yan-Ming,Rong Zhi-Peng,Ding Juan,Pan Xi

Abstract

<b><i>Objective:</i></b> The aim of this study was to investigate the effects of trichostatin A (TSA) on cervical cancer and the related mechanisms. <b><i>Methods:</i></b> The HeLa and Caski cervical cancer cell lines were treated with different concentrations of TSA. Cell viability was measured by MTT assays. Cell apoptosis was analysed using flow cytometry. Expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6), protein arginine methyltransferase 5 (PRMT5), and stanniocalcin 1 (STC1) was determined by qRT-PCR and Western blotting. Protein levels of LC3 II/I, beclin1, p62, JNK, and p-JNK were detected by Western blotting. <b><i>Results:</i></b> Treatment with TSA significantly decreased HeLa and Caski cell viability and enhanced the apoptosis rate in a dose-dependent manner. TSA markedly elevated beclin1 protein levels and the LC3 II/I ratio and significantly reduced p62 levels in a dose-dependent manner. In addition, TSA (1 μM) significantly suppressed PRMT5 and TRPV6 levels and enhanced STC1 and p-JNK levels. The lysosomal inhibitor bafilomycin-A1 synergistically enhanced the TSA-mediated increase in autophagic flux. Either the overexpression of TRPV6 or the inhibition of JNK signalling markedly enhanced cell viability, inhibited apoptosis, and autophagy and reduced p-JNK levels in TSA-treated cells. The inhibition of STC1 significantly increased TRPV6 protein levels and reduced p-JNK levels. Overexpression of PRMT5 dramatically decreased STC1 and p-JNK protein levels and increased TRPV6 levels. <b><i>Conclusion:</i></b> TSA suppresses cervical cancer cell proliferation and induces apoptosis and autophagy through regulation of the PRMT5/STC1/TRPV6/JNK axis.

Publisher

S. Karger AG

Subject

Pharmacology,General Medicine

Reference29 articles.

1. Small W Jr, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, et al. Cervical cancer: a global health crisis. Cancer. 2017;123(13):2404–12.

2. Liou YL, Zhang TL, Yan T, Yeh CT, Kang YN, Cao L, et al. Combined clinical and genetic testing algorithm for cervical cancer diagnosis. Clin Epigenetics. 2016;8(1):66.

3. Zaman MS, Chauhan N, Yallapu MM, Gara RK, Maher DM, Kumari S, et al. Curcumin nanoformulation for cervical cancer treatment. Sci Rep. 2016;6:20051.

4. Finocchario-Kessler S, Wexler C, Maloba M, Mabachi N, Ndikum-Moffor F, Bukusi E. Cervical cancer prevention and treatment research in Africa: a systematic review from a public health perspective. BMC Womens Health. 2016;16(1):29–5.

5. Liu Y, He G, Wang Y, Guan X, Pang X, Zhang B. MCM-2 is a therapeutic target of Trichostatin A in colon cancer cells. Toxicol Lett. 2013;221(1):23–30.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3