Author:
Kim Hyun Jung,Wie Jinhong,So Insuk,Jung Myeong Ho,Ha Ki-Tae,Kim Byung Joo
Abstract
Background/Aims: ICCs are the pacemaker cells responsible for slow waves in gastrointestinal (GI) smooth muscle, and generate periodic pacemaker potentials in current-clamp mode. Methods: The effects of menthol on the pacemaker potentials of cultured interstitial cells of Cajal (ICCs) from mouse small intestine were studied using the whole cell patch clamp technique. Results: Menthol (1 - 10 μM) was found to induce membrane potential depolarization in a concentration-dependent manner. The effects of various TRP channel antagonists were examined to investigate the receptors involved. The addition of the TRPM8 antagonist, AMTB, did not block menthol-induced membrane potential depolarizations, but TRPA1 antagonists (A967079 or HC-030031) blocked the effects of menthol, as did intracellular GDPβS. Furthermore, external and internal Ca2+ levels were found to depolarize menthol-induced membrane potentials, whereas external Na+ was not. Y-27632 (a Rho kinase inhibitor), SC-560 (a selective COX 1 inhibitor), NS-398 (a selective COX 2 inhibitor), ozagrel (a thromboxane A2 synthase inhibitor) and SQ-29548 (highly selective thromboxane receptor antagonist) were used to investigate the involvements of Rho-kinase, cyclooxygenase (COX), and the thromboxane pathway in menthol-induced membrane potential depolarizations, and all inhibitors were found to block the effect of menthol. Conclusions: These results suggest that menthol-induced membrane potential depolarizations occur in a G-protein-, Ca2+-, Rho-kinase-, COX-, and thromboxane A2-dependent manner via TRPA1 receptor in cultured ICCs in murine small intestine. The study shows ICCs are targeted by menthol and that this interaction can affect intestinal motility.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献