Valley Index as a Predictor of Prenatal Diagnosis of Total Anomalous Pulmonary Venous Connection

Author:

Maruyama Wakako,Kawasaki Yuki,Murakami Yosuke,Fujino Mitsuhiro,Sasaki Takeshi,Nakamura Kae,Yoshida Yoko,Suzuki Tsugutoshi,Kurosaki Kenichi,Hayashi Taiyu,Ono Hiroshi,Ehara Eiji

Abstract

<b><i>Introduction:</i></b> Total anomalous pulmonary venous connection (TAPVC) has a low prenatal diagnostic rate. Therefore, we investigated whether Doppler waveforms with a low pulsatility in the pulmonary veins can indicate fetal TAPVC. <b><i>Methods:</i></b> This retrospective study included 16 fetuses with TAPVC, including 10 with complex congenital heart disease and 104 healthy fetuses that underwent fetal echocardiography. Pulmonary venous S and D wave flow velocities and the valley (representing the lowest velocity between the S and D waves) were measured. Valley indices I and II were then calculated as (velocity of valley/greater of the S and D wave velocities) and (velocity of valley/lesser of the S and D wave velocities), respectively. <b><i>Results:</i></b> Supra/infracardiac TAPVC cases exhibited significantly greater valley indices than that of the healthy group. After adjusting for gestational age at fetal echocardiography, valley indices I (odds ratio [OR] 7.26, <i>p</i> &lt; 0.01) and II (OR: 9.23, <i>p</i> &lt; 0.01) were significant predictors of supra/infracardiac TAPVC. Furthermore, valley indices I and II exhibited a high area under the curve for detecting supra/infracardiac TAPVC, regardless of the presence of pulmonary venous obstruction. <b><i>Conclusion:</i></b> The valley index may be a useful tool for the detection of fetal TAPVC.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3