Uric Acid Induces Cardiomyocyte Apoptosis via Activation of Calpain-1 and Endoplasmic Reticulum Stress

Author:

Yan Meiling,Chen Kankai,He Li,Li Shuai,Huang Dong,Li Jingbo

Abstract

Background/Aims: Hyperuricemia is associated with an increased risk for multiple cardiovascular diseases, but the underlying mechanisms remain largely elusive. Calpain-1 is a protease that is implicated in several pathological conditions that affect the heart. The aim of this current study was to test the effects of uric acid (UA) on cardiomyocyte survival and cardiac function and to investigate the role of calpain-1 in the UA-induced effects in the heart and their underlying mechanisms. Methods: In vivo, hyperuricemia was induced by oxonic acid (OA) administration in Sprague-Dawley rats for 16 weeks; TUNEL staining was used to identify apoptotic cells. Left ventricular (LV) sections were stained with Sirius Red to evaluate interstitial fibrosis. Cardiac catheterization was performed to evaluate cardiac function. In vitro, cultured H9c2 cells were incubated with different UA concentrations. MTT assays and flow cytometry were used to evaluate cell viability and apoptosis. All related gene expression levels were analyzed by quantitative real-time PCR (qRT-PCR), and all protein expression levels were analyzed by western blotting. Results: Hyperuricemia induction in vivo resulted in cellular apoptosis, interstitial fibrosis and diastolic dysfunction in the rat hearts, as well as increased activation of calpain-1 and endoplasmic reticulum (ER) stress, while allopurinol treatment mitigated the above changes. UA administration in vitro increased apoptosis and decreased H9c2 cell viability in a dose-dependent manner. Increased activation of calpain-1 and ER stress was also observed in the groups with high UA levels. Calpain-1 siRNA and the calpain inhibitor CI-III alleviated UA-induced ER stress and apoptosis, while inhibiting ER stress by tauroursodeoxycholic acid (TUDCA) mitigated UA-induced apoptosis without affecting calpain-1 expression or activity. Conclusions: These findings suggest that UA induces cardiomyocyte apoptosis through activation of calpain-1 and ER stress. These results may provide new insights into the mechanisms of hyperuricemia-associated cardiovascular risks and hopefully identify new treatment targets.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3