Author:
Xu Dongsheng,Han Gaohua,Zhou Xueyi,Yong Hongmei,Jia Yuanyuan,Zhao Fengjiao,Shi Huichang
Abstract
<b><i>Introduction:</i></b> This study attempted to investigate how proprotein convertase subtilisin/kexin type 9 (PCSK9) influences the stemness of stomach adenocarcinoma (STAD) cells. <b><i>Methods:</i></b> CCK-8 and sphere-formation assays were used to detect cell viability and stemness. qRT-PCR and Western blot were used to detect PCSK9 and TEAD4 expression. The binding relationship was verified by dual-luciferase and chromatin immunoprecipitation assays. The effect of TEAD4 activating PCSK9 on the stemness of STAD cells was detected by bioinformatics, BODIPY 493/503, Oil red O, Western blot, and kits. In vivo experiments verified the role of the TEAD4/PCSK9 axis in tumor formation in nude mice. <b><i>Results:</i></b> PCSK9 and TEAD4 were highly expressed in STAD. PCSK9 was enriched in the fatty acid metabolism (FAM) pathway. PCSK9 activated the fatty acid metabolism and promoted the proliferation and stemness of STAD cells. TEAD4 as a transcription factor upstream of PCSK9, cell experiments revealed that knockdown of PCSK9 inhibited STAD cell stemness, whereas further addition of fatty acid inhibitors could attenuate the promoting effect on STAD cell stemness brought by STAD overexpression. Rescue experiments showed overexpressed PCSK9 exerted an inhibitory effect on the stemness of STAD cells brought by TEAD4 knockdown. The hypothesis that TEAD4/PCSK9 axis can promote STAD cell growth was confirmed by in vivo experiments. <b><i>Conclusion:</i></b> Transcription factor TEAD4 could activate PCSK9 to promote the stemness of STAD cells through FAM. These results added weight to the assumption that TEAD4/PCSK9 axis has the potential to be the therapeutic target that inhibits cancer stem cell in STAD.