Deep Learning Neural Network-Guided Detection of Asbestos Bodies in Bronchoalveolar Lavage Samples

Author:

Hakkarainen Antti J.,Randen-Brady Reija,Wolff Henrik,Mäyränpää Mikko I.,Sajantila Antti

Abstract

Introduction: Asbestos is a global occupational health hazard, and exposure to it by inhalation predisposes to interstitial as well as malignant pulmonary morbidity. Over time, asbestos fibers embedded in lung tissue can become coated with iron-rich proteins and mucopolysaccharides, after which they are called asbestos bodies (ABs) and can be detected in light microscopy (LM). Bronchoalveolar lavage, a cytological sample from the lower airways, is one of the methods for diagnosing lung asbestosis and related morbidity. Search for ABs in these samples is generally laborious and time-consuming. We describe a novel diagnostic method, which implements deep learning neural network technology for the detection of ABs in bronchoalveolar lavage samples (BALs). Methods: BALs with suspicion of asbestos exposure were scanned as whole slide images (WSIs) and uploaded to a cloud-based virtual microscopy platform with a neural network training interface. The images were used for training and testing a neural network model capable of recognizing ABs. To prioritize the model’s sensitivity, we allowed it to also make false-positive suggestions. To test the model, we compared its performance to standard LM diagnostic data as well as the ground truth (GT) number of ABs, which we established by a thorough manual search of the WSIs. Results: We were able to reach overall sensitivity of 93.4% (95% CI: 90.3–95.7%) in the detection of ABs in comparison to their GT number. Compared to standard LM diagnostic data, our model showed equal to or higher sensitivity in most cases. Conclusion: Our results indicate that deep learning neural network technology offers promising diagnostic tools for routine assessment of BALs. However, at this stage, a human expert is required to confirm the findings.

Publisher

S. Karger AG

Subject

General Medicine,Histology,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3