Mdia1 is Crucial for Advanced Glycation End Product-Induced Endothelial Hyperpermeability

Author:

Zhou Xiaoyan,Weng Jie,Xu Jing,Xu Qiulin,Wang Weiju,Zhang Weijin,Huang Qiaobing,Guo Xiaohua

Abstract

Background/Aims: Disruption of endothelial barrier integrity in response to advanced glycation end products (AEGs) stimulation contributes to vasculopathy associated with diabetes mellitus. Mammalian diaphanous-related formin (mDia1) has been reported to bind to the cytoplasmic domain of the receptor for advanced glycation end products (RAGE), which induces a series of cellular processes. This study directly evaluated the participation of mDia1 in AGE-induced hyperpermeability and revealed the precise intracellular signal transductions of this pathological process. Methods: Human umbilical vein endothelial cells (HUVECs) were used in the in vitro studies. Trans-endothelial electric resistance and permeability coefficient for dextran (Pd) were measured to analyze cell permeability. Western blotting, immunofluorescence staining and flow cytometry assay were performed to investigate the underlying mechanism. Dextran flux across the mesentery in mice was monitored to investigate in vivo microvascular permeability. Results: we found that AGEs evoked Nox4 membrane translocation, reactive oxygen species production, phosphorylation of Src and VE-cadherin, dissociation of adherens junctions and eventual endothelial hyperpermeability through RAGE-mDia1 binding. Cells overexpressing mDia1 by recombinant adenovirus infection showed stronger cellular responses induced by AGEs. Down-regulation of mDia1 by infection with an adenovirus encoding siRNA or blockade of RAGE-mDia1 binding by transfection with RAGE mutant plasmids into HUVECs abolished these AGE-induced effects. Furthermore, knockdown of mDia1 using an adenovirus or genetical knockout of RAGE in C57 mice rescued AGE-evoked microvascular hyperpermeability. Conclusion: Our study revealed that mDia1 plays a critical role in AGE-induced microvascular hyperpermeability through binding to RAGE.

Publisher

S. Karger AG

Subject

Physiology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3