Indole-3-Carbinol Induces Apoptosis of Hepatic Stellate Cells through K63 De-Ubiquitination of RIP1 in Rats

Author:

Li Bin,Cong Meng,Zhu Yanan,Xiong Ying,Jin Wenyi,Wan Yang,Zhou Yunjiao,Ao Ying,Wang Hui

Abstract

Background/Aims: The apoptosis of activated hepatic stellate cells (HSCs) is the central event in the reversal of liver fibrosis. K63 de-ubiquitinated receptor-interacting protein (RIP)1 promotes apoptosis in tumor necrosis factor (TNF)-α signaling pathway. In the previous study, we have proved that indole-3-carbinol (I3C) could reverse different models of liver fibrosis in rats, but the mechanism is still unclear. Thus, the present research aimed to demonstrate the induction of I3C on apoptosis of HSCs and the underlying molecular mechanism. Methods: HSC-T6, an immortalized rat liver stellate cell line, was treated for 24 hours with 25, 50 and 100 µM of I3C. The apoptosis of HSC-T6 was analyzed by flow cytometric analysis, acridine orange staining and RT-PCR, respectively. K63 de-ubiquitination of RIP1 and the expression of ubiquitin ligases and deubiquitinases were analyzed by Co-IP assay and western blot. Knockdown of deubiquitinases was undertaken by small interfering RNA (siRNA). Results: The results of flow cytometric analysis indicated that the apoptotic rate of HSC-T6 was induced by I3C in a dose-dependent manner. Observation by acridine orange staining exhibited nuclear condensation and apoptotic bodies in I3C treated cells. Consistently, the expression ratio of Bax/bcl-2 was markedly increased by I3C. These results indicated that I3C could significantly induce apoptosis of HSC-T6 cells. Furthermore, Co-IP assay revealed K63 de-ubiquitination of RIP1 by I3C, associated with the induction of caspase 8. Although I3C had no effect on the expression of ubiquitin ligases cellular inhibitor of apoptosis 1/2 (cIAP1/2), the protein level of deubiquitinase cylindromatosis (CYLD) was significantly induced by I3C. Moreover, CYLD silencing reversed the pro-apoptosis induction effect of I3C and reduced the expression ratio of Bax/bcl-2 in HSC-T6 cells. Conclusion: These results demonstrated that I3C could induce apoptosis of HSC through RIP1 K63 de-ubiquitination by upregulating deubiquitinase CYLD.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3