Investigation of Recessive Effects of Coding Variants on Common Clinical Phenotypes in Exome-Sequenced UK Biobank Participants

Author:

Curtis David

Abstract

<b><i>Introduction:</i></b> Previous studies have demonstrated effects of rare coding variants on common, clinically relevant phenotypes although the additive burden of these variants makes only a small contribution to overall trait variance. Although recessive effects of individual homozygous variants have been studied, little work has been done to elucidate the impact of rare coding variants occurring together as compound heterozygotes. <b><i>Methods:</i></b> In this study, attempts were made to identify pairs of variants likely to be occurring as compound heterozygotes using 200,000 exome-sequenced subjects from the UK Biobank. Pairs of variants, which were seen together in the same subject more often than would be expected by chance, were excluded as it was assumed that these might be present in the same haplotype. Attention was restricted to variants with minor allele frequency ≤0.05 and to those predicted to alter amino acid sequence or prevent normal gene expression. For each gene, compound heterozygotes were assigned scores based on the rarity and predicted functional consequences of the constituent variants and the scores were used in a logistic regression analysis to test for association with hypertension, hyperlipidaemia, and type 2 diabetes. <b><i>Results:</i></b> No statistically significant associations were observed and the results conformed to the distribution, which would be expected under the null hypothesis. The average number of apparently compound heterozygous subjects for each gene was only 282.2. <b><i>Conclusion:</i></b> It seems difficult to detect an effect of compound heterozygotes on the risk of these phenotypes. Even if recessive effects from compound heterozygotes do occur, they would only affect a small number of people and overall would not make a substantial contribution to phenotypic variance. This research has been conducted using the UK Biobank Resource.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3