Arctigenin Attenuates Ischemia/Reperfusion Induced Ventricular Arrhythmias by Decreasing Oxidative Stress in Rats

Author:

Yang Jing,Yin Hong-shan,Cao Ya-jing,Jiang Zhi-an,Li Yong-jun,Song Mu-chun,Wang Yong-fei,Wang Zhi-hua,Yang Rong,Jiang Yun-fa,Sun Jin-peng,Liu Bo-yi,Wang Chuan

Abstract

Background/Aims: Arctigenin (ATG) has been shown to possess anti-inflammatory, immunemodulatory, anti-viral, anti-microbial, anti-carcinogenic, vasodilatory and anti-platelet aggregation properties. However, the protective role of ATG in prevention of arrhythmias induced by myocardial ischemia/reperfusion is unknown. The aim of this study was to investigate the anti-arrhythmia effect of ATG in an ischemia/reperfusion injured rat heart model and explore the related mechanisms. Methods: Rats were randomly exposed to sham operation, myocardial ischemia/ reperfusion (MI/R) alone, ATG+ MI/R, pretreated with ATG in low (12.5 mg/kg/day), medium (50 mg/kg/day) and high dose (200 mg/kg/day), respectively. Ventricular arrhythmias were assessed. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and the level of malondialdehyde (MDA) in myocardial tissue were determined by chemical analysis. Results: Compared to MI/R, rats pretreated with ATG in doses of 50 mg/kg/day and 200 mg/kg/day showed significantly reduced incidence and duration of ventricular fibrillation, ventricular tachycardia and ventricular ectopic beat (VEB), and decreased the arrhythmia score during the 30-min ischemia. Incidence and duration of ventricular tachycardia, infarction size and arrhythmia scores in these groups were significantly decreased during the 120-min reperfusion. No ventricular fibrillation occurred during the period of reperfusion. Rats pretreated with ATG in doses of 50 mg/kg/day and 200 mg/kg/ day markedly enhanced the activities of antioxidant enzymes SOD and GSH-Px, reduced the level of MDA. No differences were observed between the group pretreated with a low dose of ATG and the sham group. Administration of ATG significantly increased the expression of antioxidant stress protein Nrf2, Trx1 and Nox1. Conclusion: Our data suggested that ATG plays anti-arrhythmia role in ischemia/reperfusion injury, which is probably associated with attenuating oxidative stress by Nrf2 signaling pathway.

Publisher

S. Karger AG

Subject

Physiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3