Machine Learning to Improve Accuracy of Transcutaneous Bilirubinometry

Author:

Morimoto Daisaku,Washio Yosuke,Fukuda Kana,Sato Takeshi,Okamura Tomoka,Watanabe Hirokazu,Yoshimoto Junko,Tanioka Maki,Tsukahara Hirokazu

Abstract

<b><i>Introduction:</i></b> This study aimed to develop models for predicting total serum bilirubin by correcting errors of transcutaneous bilirubin using machine learning based on neonatal biomarkers that could affect spectrophotometric measurements of tissue bilirubin. <b><i>Methods:</i></b> This retrospective study included infants born at our hospital (≥36 weeks old, ≥2,000 g) between January 2020 and December 2022. Infants without a phototherapy history were included. Robust linear regression, gradient boosting tree, and neural networks were used for machine learning models. A neural network, inspired by the structure of the human brain, was designed comprising three layers: input, intermediate, and output. <b><i>Results:</i></b> Totally, 683 infants were included. The mean (minimum-maximum) gestational age, birth weight, participant age, total serum bilirubin, and transcutaneous bilirubin were 39.0 (36.0–42.0) weeks, 3,004 (2,004–4,484) g, 2.8 (1–6) days of age, 8.50 (2.67–18.12) mg/dL, and 7.8 (1.1–18.1) mg/dL, respectively. The neural network model had a root mean square error of 1.03 mg/dL and a mean absolute error of 0.80 mg/dL in cross-validation data. These values were 0.37 mg/dL and 0.28 mg/dL, smaller compared to transcutaneous bilirubin, respectively. The 95% limit of agreement between the neural network estimation and total serum bilirubin was −2.01 to 2.01 mg/dL. Unnecessary blood draws could be reduced by up to 78%. <b><i>Conclusion:</i></b> Using machine learning with transcutaneous bilirubin, total serum bilirubin estimation error was reduced by 25%. This integration could increase accuracy, lessen infant discomfort, and simplify procedures, offering a smart alternative to blood draws by accurately estimating phototherapy thresholds.

Publisher

S. Karger AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3