Sitagliptin Extends Lifespan of Caenorhabditis elegans by Inhibiting Insulin/Insulin-Like Signaling and Activating Dietary Restriction-Like Signaling Pathways

Author:

Ye Qunshan,Li Yimin,Wang Cheng,Zheng Jingming,Qiao Jing,Yang Jing,Wan Qin-Li

Abstract

<b><i>Introduction:</i></b> The discovery of longevity molecules that delay aging and prolong lifespan has always been a dream of humanity. Sitagliptin phosphate (SIT), an oral dipeptidyl peptidase-4 (DPP-4) inhibitor, is an oral drug commonly used in the treatment of type 2 diabetes (T2D). In addition to being antidiabetic, previous studies have reported that SIT has shown potential to improve health. However, whether SIT plays a role in the amelioration of aging and the underlying molecular mechanism remain undetermined. <b><i>Methods:</i></b> <i>Caenorhabditis elegans</i> (<i>C. elegans</i>) was used as a model of aging. Lifespan assays were performed with adult-stage worms on nematode growth medium plates containing FUdR with or without the specific concentration of SIT. The period of fast body movement, body bending rates, and pharyngeal pumping rates were recorded to assess the healthspan of <i>C. elegans</i>. Gene expression was confirmed by GFP fluorescence signal of transgenic worms and qPCR. In addition, the intracellular reactive oxygen species levels were measured using a free radical sensor H2DCF-DA. <b><i>Results:</i></b> We found that SIT significantly extended lifespan and healthspan of <i>C. elegans</i>. Mechanistically, we found that several age-related pathways and genes were involved in SIT-induced lifespan extension. The transcription factors DAF-16/FOXO, SKN-1/NRF2, and HSF-1 played important roles in SIT-induced longevity. Moreover, our findings illustrated that SIT-induced survival benefits by inhibiting the insulin/insulin-like signaling pathway and activating the dietary restriction-related and mitochondrial function-related signaling pathways. <b><i>Conclusion:</i></b> Our work may provide a theoretical basis for the development of anti-T2D drugs as antiaging drugs, especially for the treatment of age-related disease in diabetic patients.

Publisher

S. Karger AG

Subject

Geriatrics and Gerontology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3