The Effect of Hippocampal Cognitive Impairment and XIAP on Glucose and Lipids Metabolism in Rats

Author:

Xia Chunbo,Zhu Lin,Shao Wenhua,Mi Sisi,Du Sen,Ye Lin,Liu Manjun,Pang YongJun,Nong Linlin,Jiang Changwen,Zhao Hailu,Qi Guangying

Abstract

Background/Aims: To investigate the effect of cognitive impairment and X-linked inhibitor of apoptosis protein (XIAP) on glucolipid metabolism. Materials and Methods: β-amyloid (Aβ 1-42) was injected into the hippocampus of rats to establish a cognitive impairment model. Trans-activator of transcription (TAT)-XIAP fusion protein (the TAT-XIAP group), PBS (the model group), or XIAP antisense oligonucleotides (the ASODN group) was injected into the lateral ventricles of the rats to increase and decrease the activity of XIAP in the hippocampus. To determine the level of blood glucose and lipids, adenosine monophosphate-activated protein kinase (AMPK) expression of liver and hipppocamual neuronal apoptosis. Results: The levels of FPG, TG, TC and LDL were significantly higher in the TAT-XIAP group, the model group and the ASODN group than in the blank group (P < 0.05); however, the HDL level showed no significant change in all groups of rats. The apoptosis indexes of the rat hippocampal CA1 neuron were 68.44 ± 4.31%, 13.21 ± 2.30%, 56.68 ± 4.771%, and 87.51 ± 6.63% in the model group, the blank group, the TAT-XIAP group and the ASODN group, respectively. Gastrointestinal motility was less frequent (per time unit) in the model group, the ASODN group and the TAT-XIAP group than in the blank group. Compared with the model group, gastrointestinal motility was significantly less frequent in the ASODN group and was significantly more frequent in the TAT-XIAP group. Compared with the blank group, the model group had a significantly lower gastric emptying rate and intestinal propulsive rate. Compared with the model group, the gastric emptying rate and intestinal propulsive rate were significantly lower in the ASODN group and were significantly higher in the TAT-XIAP group. Compared with the blank group, the expressions of AMPK mRNA, and AMPK protein were significantly reduced in the model group, the TAT-XIAP group, and the ASODN group. AMPK expression was significantly increased in the TAT-XIAP group and was significantly decreased in the ASODN group than in the model group. Conclusion: Cognitive impairment and hippocampal neuron apoptosis can cause glucose and lipids metabolic abnormalities, possibly by regulating gastrointestinal motility and AMPK expression in the liver. The changes in the function of XIAP, which is an anti-apoptotic protein in the hippocampus, may affect the metabolism of glucose and lipids.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3