Silencing of Proteasome 26S Subunit ATPase 2 Regulates Colorectal Cancer Cell Proliferation, Apoptosis, and Migration

Author:

He Jinghu,Xing Junjie,Yang Xiaohong,Zhang Chenxin,Zhang Yixiang,Wang Hao,Xu Xiaodong,Wang Hantao,Cao Yi,Xu Haonan,Zhang Chuansen,Wang Chen,Yu Enda

Abstract

Objective: Colorectal cancer (CRC) remains a major cause of cancer-related death worldwide. Proteasome 26S subunit ATPase 2 (PSMC2) plays vital roles in regulating cell cycle and transcription and has been confirmed to be a gene potentially associated with some human tumors. However, the expression correlation and molecular mechanism of PSMC2 in CRC are still unclear. This study aimed to investigate the role of PSMC2 in malignant behaviors in CRC. Methods: The high protein levels of PSMC2 in CRC samples were identified by tissue microarray analysis. Lentivirus was used to silence PSMC2 in HCT116 and RKO cells; MTT and colony formation assay were performed to determine cell proliferation. Wound healing and Transwell assay were used to detect cell migration and invasion. Flow cytometry assay was applied to detect cell cycle and apoptosis. Result: The results showed that, among the 96 CRC patients, the expression of PSMC2 was a positive correlation with the clinicopathological features of the patients with CRC. Furthermore, the low PSMC2 expression group showed a higher survival rate than the high PSMC2 expression group. The expression levels of PSMC2 in cancer tissue were dramatically upregulated compared with adjacent normal tissues. In vitro, shPSMC2 was designed to inhibit the expression of PSMC2 in CRC cells. Compared with shCtrl, silencing of PSMC2 significantly suppressed cell proliferation, decreased single cell colony formation, enhanced apoptosis, and accelerated G2 phase and/or S phase arrest. Conclusion: Survival analysis indicated that high expression of PSMC2 in the CRC samples was associated with poorer survival rate than low expression of PSMC2, while the anti-tumor effect of PSMC2 silencing was also confirmed at the cellular level in vitro. Our results suggested that PSMC2 potentially worked as a regulator for CRC, and the silencing of PSMC2 may be a therapeutic strategy for CRC.

Publisher

S. Karger AG

Subject

Infectious Diseases,Pharmacology (medical),Drug Discovery,Pharmacology,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3