Cortical Gray Matter Thickness and Volume Changes and Their Association with Memory Functions in Hyperthyroid Patients

Author:

Kumar Mukesh,Singh Sadhana,Modi Shilpi,Rana Poonam,D’souza Maria,Sekhri Tarun,Khushu Subash

Abstract

<b><i>Introduction:</i></b> Hyperthyroidism, characterized by excessive thyroid hormone production, is a common endocrine disorder that affects various physiological processes, including brain function. Recent advancements in neuroimaging techniques have enabled researchers to investigate structural alterations in the brain associated with hyperthyroidism. This study aimed to examine regional cortical thickness and cortical volume differences across the brain between hyperthyroid patients and control subjects. <b><i>Methods:</i></b> We examined localized cortical thicknesses and volumes in 34 hyperthyroid patients and 35 control subjects with high-resolution T1-weighted images using FreeSurfer software and assessed group differences with analysis of covariance (covariates: age, sex, education, and total intracranial volume). Spearman and partial correlations were performed between clinical variables and cortical thicknesses/volumes and between neuropsychological scores and cortical thicknesses/volumes, respectively. <b><i>Results:</i></b> Hyperthyroid patients exhibited significantly increased cortical thickness in bilateral superior temporal and superior frontal gyri, along with higher cortical volumes in various regions, including the right superior temporal gyrus, right superior parietal gyrus, right rostral and caudal middle frontal gyrus, and left superior frontal gyrus. Notably, thyroid hormones (fT3, fT4) correlated positively with cortical thicknesses and volumes in the superior temporal gyrus and superior frontal gyrus. Additionally, recognition memory scores negatively correlated with the right superior temporal gyrus and right superior frontal gyrus cortical thickness. <b><i>Conclusion:</i></b> The observed cortical thickening and increased cortical volume in specific brain areas provide new insights into the pathophysiological mechanism associated with brain impairment in hyperthyroidism.

Publisher

S. Karger AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3