Abstract
Objective: Macrophage apoptosis plays a key role in atherosclerotic plaque rupture. This study investigated the effects of recombinant human brain natriuretic peptide (BNP) on oxidised low-density lipoprotein (ox-LDL)-induced macrophage apoptosis and explored the underlying mechanism. Methods: A model of ox-LDL-induced macrophage injury was established to evaluate the role of BNP. Flow cytometry was employed to detect apoptosis and changes in mitochondrial membrane potential (ΔΨm), and confocal microscopy was used to determine cellular reactive oxygen species (ROS) levels. Additionally, reverse transcription-polymerase chain reaction and colourimetry were used to detect the mRNA expression and activity, respectively, of superoxide dismutase (SOD) and malondialdehyde (MDA). Results: Ox-LDL induced macrophage apoptosis in a concentration-dependent manner, and maximum apoptosis occurred at 100 μg/ml ox-LDL (45.62 ± 2.76 vs. 6.84 ± 1.94%; p < 0.05). Conversely, BNP suppressed macrophage apoptosis, with a maximal effect at 10-9 mol/l (18.56 ± 1.79%; p < 0.05). Compared with the control group, intracellular ROS levels increased, ΔΨm decreased, SOD mRNA expression and activity decreased and MDA mRNA expression and content increased in the 100-μg/ml ox-LDL group (527.30 ± 36.20 vs. 100.00 ± 0.00%, 3.01 ± 0.52 vs. 9.67 ± 0.51%, 0.53 ± 0.18 vs. 1.00 ± 0.00, 256.6 ± 8.20 vs. 355.8 ± 9.58 U/ml, 1.59 ± 0.23 vs. 1.00 ± 0.00 and 29.4 ± 1.68 vs. 5.94 ± 0.51 nmol/ml; p < 0.05); these effects were significantly counteracted by 10-9 mol/l BNP (237.30 ± 30.62%, 6.55 ± 1.57%, 0.90 ± 0.07, 310.4 ± 2.97 U/ml, 1.14 ± 0.10, 20.54 ± 1.55 nmol/ml; p < 0.05). Conclusion: BNP attenuates ox-LDL-induced macrophage apoptosis by suppressing oxidative stress and preventing ΔΨm loss.
Subject
Pharmacology (medical),Cardiology and Cardiovascular Medicine