Analysis of Genes Involved in Persistent Atrial Fibrillation: Comparisons of ‘Trigger’ and ‘Substrate’ Differences

Author:

Zou Rongjun,Yang Minglei,Shi Wanting,Zheng Chengxi,Zeng Hui,Lin Xifeng,Zhang Dingwen,Yang Songran,Hua Ping

Abstract

Background/Aims: Recent research has improved our understanding of the pulmonary vein and surrounding left atrial (LA-PV) junction and the left atrial appendage (LAA), which are considered the ‘trigger’ and ‘substrate’ in the development of atrial fibrillation (AF), respectively. Herein, with the aim of identifying the underlying potential genetic mechanisms, we compared differences in gene expression between LA-PV junction and LAA specimens via bioinformatic analysis. Methods: Microarray data of AF (GSE41177) were downloaded from the Gene Expression Omnibus database. In addition, linear models for microarray data limma powers differential expression analyses and weighted correlation network analysis (WGCNA) were applied. Results: From the differential expression analyses, 152 differentially expressed genes and hub genes, including LEP, FOS, EDN1, NMU, CALB2, TAC1, and PPBP, were identified. Our analysis revealed that the maps of extracellular matrix (ECM)-receptor interactions, PI3K-Akt and Wnt signaling pathways, and ventricular cardiac muscle tissue morphogenesis were significantly enriched. In addition, the WGCNA results showed high correlations between genes and related genetic clusters to external clinical characteristics. Maps of the ECM-receptor interactions, chemokine signaling pathways, and the cell cycle were significantly enriched in the genes of corresponding modules and closely associated with AF duration, left atrial diameter, and left ventricular ejection function, respectively. Similarly, mapping of the TNF signaling pathway indicated significant association with genetic traits of ischemic heart disease, hypertension, and diabetes comorbidity. Conclusions: The ECM-receptor interaction as a possible central node of comparison between LA-PV and LAA samples reflected the special functional roles of ‘triggers’ and ‘substrates’ and may be closely associated with AF duration. Furthermore, LEP, FOS, EDN1, NMU, CALB2, TAC1, and PPBP genes may be implicated in the occurrence and maintenance of AF through their interactions with each other.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3