LncRNA LCPAT1 Mediates Smoking/ Particulate Matter 2.5-Induced Cell Autophagy and Epithelial-Mesenchymal Transition in Lung Cancer Cells via RCC2

Author:

Lin Hongyan,Zhang Xiaohong,Feng Nannan,Wang Ruoyang,Zhang Weituo,Deng Xiaobei,Wang Yu,Yu Xiao,Ye Xiaofei,Li Lei,Qian Ying,Yu Herbert,Qian Biyun

Abstract

Background/Aims: Ecological studies have shown that air pollution and prevalence of cigarette smoking are positively correlated. Evidence also suggests a synergistic effect of cigarette smoking and PM2.5 exposure (Environmental Particulate Matter ≤ 2.5 µm in diameter) on lung cancer risk. We aimed to evaluate the interaction between smoking prevalence and PM2.5 pollution in relation to lung cancer mortality and determine its underlying mechanisms in vitro. Methods: “MOVER” method was used to analyze the interaction between smoking prevalence and PM2.5 pollution in relation to lung cancer mortality. Cell autophagy and malignant behaviors induced by cigarette smoke extract (CSE) and PM2.5 exposure were examined in vitro. Gene expression was examined by qRT-PCR and western blot. RNA and protein interaction was determined using a RNA binding protein immunoprecipitation assay. Results: An increased risk for lung cancer death (RERI (the relative excess risk) =0.28) was observed with a synergistic interaction between cigarette smoking and PM2.5 pollution. Cell migration, invasion, EMT (epithelial-mesenchymal transition) and autophagy were elevated when lung cancer cells were treated with CSE and PM2.5 in combination. A lncRNA, named lung cancer progression-association transcript 1 (LCPAT1), was up-regulated after the treatment of CSE and PM2.5, and knocking down the lncRNA impaired the effect of CSE and PM2.5 on lung cancer cells. In addition, LCPAT1 was shown to bind to RCC2, and RCC2 mediated the effect of LCPAT1 on cell autophagy, migration, invasion and EMT in lung cancer. Conclusions: Our results suggest that combined exposure to CSE and PM2.5 induces LCPAT1 expression, which up-regulates autophagy, and promotes lung cancer progression via RCC2.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3