Seasonality of Reproduction in a Subtropical Free-Living Finch <i>Amandava amandava</i>: Plasticity of Adenohypophyseal Gonadotropes, Lactotropes, and Thyrotropes

Author:

Mohanty Banalata

Abstract

<b><i>Introduction:</i></b> This study sought to decipher the mechanism of transitions between life-history stages in a seasonally reproducing subtropical finch, <i>Amandava amandava</i> delineating the plasticity of the gonadotropes (LH cells), lactotropes (PRL cells), and thyrotropes (TSH cells) in the pituitary gland including the pars tuberalis, with regard to the in situ expression, morphological characteristics, and alteration in the plasma levels of hormones. <b><i>Methods:</i></b> Immunohistochemistry of LH, PRL, TSH cells, morphometry and densitometry of expressed hormones (Image J software analysis), and ELISA for plasma hormonal levels were performed. <b><i>Results:</i></b> LH, PRL, and TSH cells showed remarkable plasticity during the annual seasonal reproductive cycle. In the PT, all the 3 cell types were detected during the breeding phase, with additional detection of the TSH immunoreactivity during the pre-breeding and the PRL immunoreactivity during post-breeding phases. Pars distalis (PD) expressions and the plasma levels of the LH and TSH were at the peak during the breeding phase, but the PRL peak was during the post-breeding phase. In addition to PRL in the neurohypophysis and in the median eminence, hypothalamic PRL, and TSH were also elucidated. <b><i>Conclusions:</i></b> This study suggests activation of the gonadal axis by the PT TSH which might transduce seasonal cues, but not specifically photoperiod, in the birds of the tropics/subtropics. Post-breeding phase sustained high plasma TSH and peak plasma PRL might coordinate the transition to the non-breeding phase including the trigger of parental care as the later hormone assigned with. Hypothalamic TSH and PRL might influence events of seasonality through central modulation.

Publisher

S. Karger AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3