Exosomes from MiR-126-Overexpressing Adscs Are Therapeutic in Relieving Acute Myocardial Ischaemic Injury

Author:

Luo Qiancheng,Guo Dongfeng,Liu Guorong,Chen Guo,Hang Min,Jin Mingming

Abstract

Background/Aims: Recent studies have indicated that exosomes play an important role in adipose-derived stem cell (ADSC) transplant-mediated ischaemic heart disease therapy. However, the treatment effect is not obvious. The aim of this study is to investigate whether ADSC-derived exosomes enriched with microRNA (miR)-126 have a more protective effect on acute myocardial infarction (AMI). Methods: Exosomes were characterized by transmission electron microscopy, and the exosome particles were further examined using nanoparticle tracking analyses. A rat model of myocardial infarction and in vitro model of hypoxia-induced H9c2 myocardial cell injury were established to study the protective mechanism of exosomes from miR-126-overexpressing ADSCs. Results: The in vitro results showed that exosomes derived from miR-126-overexpressing ADSCs decreased H9c2 myocardial cell injury by reducing inflammation factor expression during hypoxia induction. The miR-126-enriched exosomes also decreased the expression of fibrosis-related proteins of H9c2 cells under hypoxic conditions. Matrigel® and Transwell® assays showed that miR-126-enriched exosomes significantly promoted microvascular generation and migration, respectively. In vivo studies confirmed that exosomes derived from ADSCs significantly decreased the myocardial injury area of infarction, especially after miR-126-enriched exosome treatment. Cardiac fibrosis and inflammatory cytokine expression were also decreased after treatment with miR-126-enriched exosomes. However, blood vessel formation was promoted in the infarction region of AMI rats. Conclusions: The results suggested that the expression of miR-126-enhanced ADSC-derived exosomes prevented myocardial damage by protecting myocardial cells from apoptosis, inflammation, fibrosis, and increased angiogenesis.

Publisher

S. Karger AG

Subject

Physiology

Cited by 226 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3