Author:
Gao Ye,Wang Pan,Wang Yaqin,Wu Lijie,Wang Xiaobing,Zhang Kun,Liu Quanhong
Abstract
Background/Aims: Non-toxic fomitopsis is has been traditionally used in folk medicine in many countries for its anti-inflammatory and anti-vascular disease activities. The present study investigates the antitumor effect of Fomitopsis pinicola (Sw. Ex Fr.) Karst chloroform extract (FPKc) on S180 tumor cells in vitro and in vivo and we determined the underlying mechanisms. Methods: HPLC was employed to analyze the constituents of FPKc. In-vitro 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to quantify the growth inhibition of FPKc; Propidium iodide (PI) exclusion assay and scanning electron microscopy (SEM) were used to observe the damage on the cell membrane and the changes of the cell morphology; Staining with Hoechst 33342/propidium iodide (HO/PI) and the application of the Annexin V-FITC/PI analysis permitted to observe the cell death triggered by FPKc; DNA damage and cell cycle arrest were detected by flow cytometry; Rhodamine 123 (RH123) and Cytochrome C were used as dyes to investigate the alterations of the mitochondria. In-vivo tumor inhibition and mice survival time were determined. Results: The results of the HPLC assay indicated that FPKc might contain DA (dehydroeburiconic acid), PA (pachymic acid), and ES (ergosterol), at percentages of 0.25%, 17.8%, and 10.5%, respectively. Concerning the study of the biological function, the results showed that FPKc exhibited preferential and significant suppression of proliferation on specific cell lines including S180, HL-60, U937, K562, SMMC-7721, and Eca-109 cells, which induced plasma membrane and cell morphology damages, triggering S180 tumor-cells late apoptosis and leading to DNA damage and S phase arrest. Mitochondria were suspected to play a vital role in these changes. In vivo data indicated that FPKc inhibited the solid tumor growth and prolonged the survival time of tumor-bearing mice. Moreover, FPKc provoked only little damage on normal cells in vitro and also on normal tissues in vivo. Conclusion: FPKc inhibited S180 tumor cells growth and prolonged the lifespan of mice. In vitro, we found that FPKc induced S180 tumor cells apoptosis and cell cycle arrest, possibly via the mitochondrial pathway.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献