Multiparameter Characterization Confirms Apoptosis as the Primary Cause of Reduced Self-renewal Capacity in Cultured Human Fetal Neural Stem Cells

Author:

Guan Yunqian,Li Xiaobo,Zou Haiqiang,Yan Xiaoming,Zhao Chunsong,Wang Jiayin,Chen Ling,Zhang Y. Alex

Abstract

Background: Human fetal striatum-derived neural stem cells (hfsNSCs) are important in regenerative medicine; however, their ability to self-renew diminishes quickly following passages in culture. Typically when hfsNSC-derived neurospheres are dissociated by accutase, more than 90% of the cells survive, but only 6-8% of the cells are able to form secondary neurospheres. Our hypothesis is that the hfsNSCs that are unable to form new neurospheres become apoptotic. Methods/Results: Because the NSC apoptosis process has never been characterized in detail, we characterized hfsNSC apoptosis using multiparameter analysis and determined that the majority of hfsNSCs undergo apoptosis after passaging, which leads to a reduction in self-renewal. The replacement of trituration with vortexing decreases apoptosis, increases self-renewal, and does not affect NSC differentiation. When we used live cell staining with Annexin V, Hoechst 33342, and PI together, the apoptotic index was in agreement with what could be obtained using fixed-cell staining methods, including TUNEL and activated caspase-3 immunocytochemistry. NSC apoptosis could be divided into 9 stage types based on our live cell assay. Several types during early and late stages had similar staining profiles that could be further discriminated based on cell size. Conclusion: Apoptosis largely contributes to the low self-renewal of neurospheres, and replacing trituration with vortexing aided in alleviating NSC apoptosis. Multiparameter analysis is required for the identification of NSC apoptosis, particularly when live cell staining is used.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3