MicroRNA-150 Inhibits the Activation of Cardiac Fibroblasts by Regulating c-Myb

Author:

Deng Peng,Chen Ling,Liu Zheng,Ye Ping,Wang Sihua,Wu Jie,Yao Yufeng,Sun Yuan,Huang Xiaofan,Ren Linyun,Zhang Anchen,Wang Ke,Wu Chuangyan,Yue Zhang,Xu Xuezeng,Chen Manhua

Abstract

Background/Aims: Cardiac fibrosis is the primary cause of deteriorated cardiac function in various cardiovascular diseases. Numerous studies have demonstrated that microRNAs (miRNAs) are critical regulators of myocardial fibrosis. Specifically, many studies have reported that miR-150 is downregulated in cardiovascular diseases, such as acute myocardial infarction (AMI), myocardial hypertrophy and myocardial fibrosis. However, the exact role of miR-150 in these pathological processes remains unknown. Methods: We used the transverse aortic constriction (TAC) mouse model to study the role of miR-150 in cardiac fibrosis induced by pressure overload. After the TAC operation, qRT-PCR was used to measure the expression profiles of miR-150 in left ventricle tissues and populations of primary heart cell types. Then, we used both miR-150 knockout mice and wild type (WT) mice in the TAC model. Changes in cardiac function and pathology were measured using transthoracic echocardiography and pathological analysis, respectively. Furthermore, we predicted the target of miR-150 in cardiac fibroblasts (CFs) and completed in vitro CF transfection experiments using miR-150 analogs and siRNA corresponding to the predicted target. Results: We observed decreased expression levels of miR-150 in hearts suffering pressure overload, and these levels decreased more sharply in CFs than in cardiomyocytes. In addition, the degrees of cardiac function deterioration and cardiac fibrosis in miR-150-/- mice were more severe than were those in WT mice. By transfecting CFs with an miR-150 analog in vitro, we observed that miR-150 inhibited cardiac fibroblast activation. We predicted that the transcription factor c-Myb was the target of miR-150 in CFs. Transfecting CFs with c-Myb siRNA eliminated the effects of an miR-150 inhibitor, which promoted CF activation. Conclusion: These findings reveal that miR-150 acts as a pivotal regulator of pressure overload-induced cardiac fibrosis by regulating c-Myb.

Publisher

S. Karger AG

Subject

Physiology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3