Kidney Injury from Recurrent Heat Stress and Rhabdomyolysis: Protective Role of Allopurinol and Sodium Bicarbonate

Author:

Sánchez-Lozada Laura-Gabriela,García-Arroyo Fernando E.,Gonzaga Guillermo,Silverio Octaviano,Blas-Marron Mónica G.,Muñoz-Jimenez Itzel,Tapia Edilia,Osorio-Alonso Horacio,Madero Magdalena,Roncal-Jiménez Carlos A.,Weiss Ilana,Glaser Jason,Johnson Richard J.

Abstract

Background: Heat stress and rhabdomyolysis are major risk factors for the occurrence of repeated acute kidney injury in workers exposed to heat and strenuous work. These episodes, in turn, may progress to chronic kidney disease. Objective: The purpose of this study was to test the effect of allopurinol (AP) and sodium bicarbonate on the kidney injury induced by recurrent heat stress dehydration with concomitant repeated episodes of rhabdomyolysis. Methods: The model consisted of heat stress exposure (1 h, 37°C) plus rhabdomyolysis (R) induced by repetitive IM injections of glycerol (7.5 mL/kg BW days) in the rat. In addition, to replicate the human situation, uricase was inhibited (oxonic acid [OA] 750 mg/K/d) to increase uric acid (UA) levels. Additional groups were treated either with AP 150 mg/L, n = 10, bicarbonate (BC; 160 mM, n = 10), or both (AP + BC, n = 10) in drinking water. We also included 2 control groups consisting of normal controls (N-Ref, n = 5) and uricase-inhibited rats (OA, n = 5) that were not exposed to heat or muscle injury. Groups were studied for 35 days. Results: Uricase-inhibited rats exposed to heat and rhabdomyolysis developed pathway and increased intrarenal oxidative stress and inflammasome activation. Kidney injury could be largely prevented by AP, and also BC, although the treatments were not synergistic. Conclusion: Increased levels of UA may play an important role in the renal alterations induced by heat stress and continuous episodes of rhabdomyolysis. Therefore, treatments aimed to reduce hyperuricemia may help to decrease the renal burden in these conditions. Clinical trials are suggested to test whether this is also true in humans.

Publisher

S. Karger AG

Subject

Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3