Lapatinib Induced Suicidal Death of Human Erythrocytes

Author:

Zierle Jens,Bissinger Rosi,Egler Jasmin,Lang Florian

Abstract

Background/Aims: The human epidermal growth factor receptors tyrosine kinase inhibitor lapatinib has been shown to trigger suicidal death or apoptosis of tumor cells and is thus used for the treatment of malignancy. Side effects of lapatinib include anemia, which could, at least in theory, result from stimulation of eryptosis, the suicidal death of erythrocytes which is characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine translocation to the erythrocyte surface. Mechanisms involved in the triggering of eryptosis include oxidative stress, increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide. The present study explored, whether lapatinib induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence, and ceramide abundance utilizing labelled specific antibodies. Results: A 48 hours exposure of human erythrocytes to lapatinib (≥ 1 µg/ml) significantly increased the percentage of annexin-V-binding cells, and significantly decreased forward scatter. Lapatinib (7.5 µg/ml) did not significantly modify DCFDA fluorescence and ceramide abundance. Lapatinib slightly, but significantly decreased Fluo3-fluorescence (≥ 5 µg/ml). Lapatinib (7.5 µg/ml) enhanced the annexin-V-binding in the presence of the Ca2+ ionophore ionomycin (1 µM) without significantly modifying Fluo3 fluorescence in the presence of ionomycin. The effect of lapatinib on forward scatter but not on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Conclusion: Lapatinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect occurring despite decrease of cytosolic Ca2+ activity.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3