Quantitative Flow Ratio-Derived Index of Microcirculatory Resistance as a Novel Tool to Identify Microcirculatory Function in Patients with Ischemia and No Obstructive Coronary Artery Disease

Author:

Gao Beibei,Wu Guomin,Xie Jianchang,Ruan Jie,Xu Peng,Qian Yufeng,Gu Junjie,Li Wei,Jin Xiangbo,Tong Guoxin,Huang Jinyu

Abstract

<b><i>Background:</i></b> Coronary microvascular disease (CMVD) is associated with adverse cardiovascular outcomes. However, there is no reliable and noninvasive quantitative diagnostic method available for CMVD. The use of a pressure wire to measure the index of microcirculatory resistance (IMR) is possible, but it has inevitable practical restrictions. We hypothesized that computation of the quantitative flow ratio could be used to predict CMVD with symptoms of ischemia and no obstructive coronary artery disease (INOCA). <b><i>Methods:</i></b> We retrospectively assessed the diagnostic efficiency of the quantitative flow ratio-derived index of microcirculatory resistance (QMR) in 103 vessels from 66 patients and compared it with invasive IMR using the thermodilution technique. <b><i>Results:</i></b> Patients were divided into the CMVD group (41/66, 62.1%) and non-CMVD group (25/66, 37.9%). Pressure wire IMR measurements were made in 103 coronary vessels, including 44 left descending arteries, 18 left circumflex arteries, and 41 right coronary arteries. ROC curve analysis showed a good diagnostic performance of QMR for all arteries (area under the curve = 0.820, 95% confidence interval 0.736–0.904, <i>p</i> &lt; 0.001) in predicting microcirculatory function. The optimal cut-off for QMR to predict microcirculatory function was 266 (sensitivity: 82.9%, specificity: 72.6%, and diagnostic accuracy: 76.7%). <b><i>Conclusion:</i></b> QMR is a promising tool for the assessment of coronary microcirculation. The assessment of the IMR without the use of a pressure wire may enable more rapid, convenient, and cost-effective assessment of coronary microvascular function.

Publisher

S. Karger AG

Subject

Pharmacology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3