Smad Ubiquitination Regulatory Factor 1 (Smurf1) Promotes Thyroid Cancer Cell Proliferation and Migration via Ubiquitin-Dependent Degradation of Kisspeptin-1

Author:

Yan Chunyan,Su Haiying,Song Xiyuan,Cao Huiling,Kong Lingling,Cui Wen

Abstract

Background/Aims: Thyroid cancer is the most common malignancy in human endocrine system. Smad ubiquitination regulatory factor 1 (Smurf1) is an E3 ubiquitin-protein ligase in ubiquitin-proteasome pathway (UPP) system. This study aimed to investigate the effects of Smurf1 on thyroid cancer proliferation and metastasis, as well as underlying potential mechanism. Methods: The expression levels of Smurf1 in thyroid tumor tissues and thyroid cancer cells were detected by western blotting and qRT-PCR. Then, the effects of up-regulation or down-regulation of Smurf1 on thyroid cancer cell viability, migration, invasion, proliferation and apoptosis were measured using trypan blue exclusion assay, two-chamber migration (invasion) assay, cell colony formation assay and Guava Nexin assay, respectively. The ubiquitination of kisspeptin-1 (KISS-1) was assessed by protein ubiquitination assay. Finally, the effects of KISS-1 overexpression on activity of nuclear factor-kappa B (NF-κB) signaling pathway, as well as thyroid cancer cell viability, migration, invasion, proliferation and apoptosis were also detected, respectively. Results: Smurf1 was highly expressed in thyroid tumor tissues and thyroid cancer cells. Up-regulation of Smurf1 promoted the viability, migration, invasion and proliferation of thyroid cancer cells. Knockdown of Smurf1 had opposite effects. Moreover, smurf1 promoted the ubiquitination of KISS-1. Overexpression of KISS-1 inactivated NF-κB pathway, suppressed thyroid cancer cell viability, migration, invasion and proliferation, and induced cell apoptosis. Conclusion: Up-regulation of Smurf1 exerted important roles in thyroid cancer formation and development by promoting thyroid cancer proliferation and metastasis. The ubiquitin-dependent degradation of KISS-1 induced by Smurf1 and the activation of NF-κB signaling pathway might be involved in this process. Smurf1 could be an effective therapy target and biomarker for thyroid cancer treatment.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3