Evidence of an in vitro Coupled Diffusion Mechanism of Lesion Formation within Microcosm Dental Plaque

Author:

Owens Gareth J.,Lynch Richard J.M.,Hope Christopher K.,Cooper Lee,Higham Susan M.,Valappil Sabeel P.

Abstract

The purpose of this study was to determine whether or not the dual constant-depth film fermenter (dCDFF) is able to produce caries-like enamel lesions and to ascertain further information regarding the performance of this fully functional biological caries model. Conditions were defined by the continuation (CF) or cessation (FF) of a saliva-type growth medium supply during 50-mM sucrose exposures (8 times daily). Hydroxyapatite (n = 3) and bovine enamel (n = 3) substrata were included within each condition and samples extracted after 2, 4, 8, and 16 days. Community profiles were generated for fastidious anaerobes, Lactobacillus spp., Streptococcus spp., mutans streptococci (MS), and Veillonella spp. using selective culture techniques and enamel demineralisation assessed by transverse microradiography. Results demonstrated that the dCDFF model is able to produce caries-like enamel lesions with a high degree of sensitivity where reduced ionic strength within the FF condition increased surface layer mineral deposition. Between conditions, biofilm communities did not differ significantly, although MS in the biofilms extracted from the FF condition rose to a higher proportion (by 1.5 log10 units), and Veillonella spp. were initially greater within the CF condition (by 2.5 log10 units), indicating an enhanced ability for the clearance of low-pKa acids following exposures to sucrose. However, both conditions retained the ability for caries-like lesion formation.

Publisher

S. Karger AG

Subject

General Dentistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3