Periodic Mechanical Stress Induces Extracellular Matrix Expression and Migration of Rat Nucleus Pulposus Cells Through Src-GIT1-ERK1/2 Signaling Pathway

Author:

Gao Gongming,Li Haibo,Huang Yongjing,Yin Jianjian,Jiang Yuqing,Xu Nanwei,Zhou Dong,Nong Luming,Ren Kewei

Abstract

Background/Aims: Periodic mechanical stress has been shown to promote extracellular matrix (ECM) synthesis and cell migration of nucleus pulposus (NP) cells, however, the mechanisms need to be fully elucidated. The present study aimed to investigate the signal transduction pathway in the regulation of NP cells under periodic mechanical stress. Methods: Primary rat NP cells were isolated and seeded on glass slides, and then treated in our self-developed periodic stress field culture system. To further explore the mechanisms, data were analyzed by scratch-healing assay, quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis, western blotting, and co-immunoprecipitation assay. Results: Under periodic mechanical stress, the mRNA expression of ECM collagen 2A1 (Col2A1) and aggrecan, and migration of NP cells were significantly increased (P < 0.05 for each), associating with increases in the phosphorylation of Src, GIT1, and ERK1/2 (P < 0.05 for each). Pretreatment with the Src inhibitor PP2 reduced periodic mechanical stress-induced ECM synthesis and cell migration of NP cells (P < 0.05 for each), while the phosphorylation of GIT1 and ERK1/2 were inhibited. ECM synthesis, cell migration, and phosphorylation of ERK1/2 were inhibited after pretreatment with the small interfering RNA for GIT1 in NP cells under periodic mechanical stress (P < 0.05 for each), whereas the phosphorylation of Src was not affected. Pretreatment with the ERK1/2 inhibitor PD98059 reduced periodic mechanical stress-induced ECM synthesis and cell migration of NP cells (P < 0.05 for each). Co-immunoprecipitation assay showed that there was a direct interaction between Src and GIT1 and between GIT1 and ERK1/2. Conclusion: In conclusion, periodic mechanical stress induced ECM expression and migration of NP cells via Src-GIT1-ERK1/2 signaling pathway, playing an important role in regulation of NP cells.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3