Putative Anti-Immobility Action of Acute Insulin Is Attributable to an Increase in Locomotor Activity in Healthy Wistar Rats

Author:

Gutiérrez-García Ana G.ORCID,Contreras Carlos M.ORCID

Abstract

<b><i>Background/Aims:</i></b> Anti-immobility actions of insulin in diabetic rats that are subjected to the forced swim test (FST) have been reported. In this test, low doses of antidepressants exert actions after long-term treatment, without affecting locomotor activity in healthy rats. Few studies have compared acute and chronic actions of insulin with antidepressants in healthy rats. <b><i>Methods:</i></b> We hypothesized that if insulin exerts a true anti-immobility action, then its effects must be comparable to fluoxetine in both a 1-day treatment regimen and a 21-day treatment regimen in healthy, gonadally intact female Wistar rats. <b><i>Results:</i></b> The results showed that low levels of glycemia were produced by all treatments, including fluoxetine, and glycemia was lower in proestrus-estrus than in diestrus-metestrus. None of the treatments or regimens produced actions on indicators of anxiety in the elevated plus maze. Insulin in the 1-day regimen increased the number of crossings and rearings in the open field test and caused a low cumulative immobility time in the FST. These actions disappeared in the 21-day regimen. Compared with the other treatments, fluoxetine treatment alone or combined with insulin produced a longer latency to the first period of immobility and a shorter immobility time in the chronic regimen in the FST, without affecting locomotor activity, and more pronounced actions were observed in proestrus-estrus (i.e., a true anti-immobility effect). <b><i>Conclusion:</i></b> These results indicate that insulin does not produce a true antidepressant action in healthy rats. The purported antidepressant effects that were observed were instead attributable to an increase in locomotor activity only in the 1-day regimen.

Publisher

S. Karger AG

Subject

Biological Psychiatry,Psychiatry and Mental health,Neuropsychology and Physiological Psychology

Reference63 articles.

1. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36(10):587–97.

2. Schulingkamp RJ, Pagano TC, Hung D, Raffa RB. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci Biobehav Rev. 2000;24(8):855–72.

3. Pomytkin I, Costa-Nunes JP, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, et al. Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther. 2018;24(9):763–74.

4. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177(1–2):125–34.

5. Gerozissis K, Kyriaki G. Brain insulin: regulation, mechanisms of action and functions. Cell Mol Neurobiol. 2003;23(1):1–25.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3