TM4SF1 Regulates Pancreatic Cancer Migration and Invasion In Vitro and In Vivo

Author:

Cao Jia,Yang Jia-chun,Ramachandran Vijaya,Arumugam Thiruvengadam,Deng De-feng,Li Zhao-shen,Xu Lei-ming,Logsdon Craig D.

Abstract

Background/Aims: The cell surface protein transmembrane 4 L6 family member 1 (TM4SF1) has been detected in various tumors and plays a major role in the development of cancer. We aimed to investigate the effects of TM4SF1 on the migration and invasion of pancreatic cancer in vitro and in vivo and explore its related molecular mechanisms. Methods: qRT-PCR and immunohistochemical analyses were used to measure the expression of TM4SF1 in pancreatic cancer tissues and adjacent tissues. TM4SF1 was silenced using siRNA and shRNA to investigate the role of this protein in the proliferation and metastasis of pancreatic cancer cells. MTS and Transwell assays were used to examine the effect of TM4SF1 on pancreatic cancer cell lines. The expression and activity of MMP-2 and MMP-9 were determined by qRT-PCR, western blots and gelatin zymography. In vivo, orthotopic pancreatic tumor models were used to examine the formation of metastasis. Results: qRT-PCR and immunohistochemical analyses showed that TM4SF1 was highly expressed in pancreatic cancer tissues compared with the adjacent tissues. In in vitro experiments the silencing of TM4SF1 reduced cell migration and invasion and down-regulated the expression and activity of MMP-2 and MMP-9. However, no significant difference in cell proliferation was detected after silencing TM4SF1. Additionally, knocking down TM4SF1 decreased the formation of lung and liver metastases in orthotopic pancreatic tumor models. Conclusion: Our results demonstrate that the expression of TM4SF1 is higher in pancreatic cancer tissues and pancreatic cancer cell lines than controls. Knockdown of TM4SF1 inhibited the migration and invasion of pancreatic cancer cells by regulating the expression and activity of MMP-2 and MMP-9, which suggests that TM4SF1 may play a significant role in metastasis in pancreatic cancer.

Publisher

S. Karger AG

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3