Author:
Zhai Yu-Jia,Liu Bing-Chen,Wei Shi-Peng,Chou Chu-Fang,Wu Ming-Ming,Song Bin-Lin,Linck Valerie A.,Zou Li,Zhang Shuai,Li Xue-Qi,Zhang Zhi-Ren,Ma He-Ping
Abstract
Background/Aims: The epithelial sodium channel (ENaC) in cortical collecting duct (CCD) principal cells plays a critical role in regulating systemic blood pressure. We have previously shown that cholesterol (Cho) in the apical cell membrane regulates ENaC; however, the underlying mechanism remains unclear. Methods: Patch-clamp technique and confocal microscopy were used to evaluate ENaC activity and density. Results: Here we show that extraction of membrane Cho with methyl-β-cyclodextrin (MβCD) significantly reduced amiloride-sensitive current and ENaC single-channel activity. The effects were reproduced by inhibition of Cho synthesis in the cells with lovastatin. We have previously shown that phosphatidylinositol-4,5-bisphosphate (PIP2), an ENaC activator, is predominantly located in the microvilli, a specialized apical membrane domain. Here, our confocal microscopy data show that α-ENaC was co-localized with PIP2 in the microvilli and that Cho was also co-localized with PIP2 in the microvilli. Either extraction of Cho with MβCD or inhibition of Cho synthesis with lovastatin consistently reduced the levels of Cho, PIP2, and ENaC in the microvilli. Conclusions: Since PIP2 can directly stimulate ENaC and also affect ENaC trafficking, these data suggest that depletion of Cho reduces ENaC apical density and activity at least in part by decreasing PIP2 in the microvilli.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献